269 research outputs found

    Product Line Management with Graphical MBSE Views

    Full text link
    Reducing the cost and delay and improving quality are major issues for product and software development, especially in the automotive domain. Product line engineering is a wellknown approach to engineer systems with the aim to reduce costs and development time as well as to improve the product quality. Feature models enable to make logical selection of features and obtain a filtered set of assets that compose the product. We propose to use a color code in feature models to make possible decisions visual in the feature tree. The color code is explained and its use is illustrated. The completeness of the approach is discussed.Comment: In Proceedings TiCSA 2023, arXiv:2310.1872

    The relationship between CD4+CD25+CD127- regulatory T cells and inflammatory response and outcome during shock states

    Get PDF
    International audienceINTRODUCTION: Although regulatory T lymphocytes (Tregs) have a pivotal role in preventing autoimmune diseases and limiting chronic inflammatory conditions, they may also block beneficial immune responses by preventing sterilizing immunity to certain pathogens. METHODS: To determine whether naturally occurring Treg cells have a role in inflammatory response and outcome during shock state we conducted an observational study in two adult ICUs from a university hospital. Within 12 hours of admission, peripheral whole blood was collected for the measurement of cytokines and determination of lymphocyte count. Sampling was repeated at day three, five and seven. Furthermore, an experimental septic shock was induced in adult Balb/c mice through caecal ligation and puncture. RESULTS: Forty-three patients suffering from shock (26 septic, 17 non septic), and 7 healthy volunteers were included. The percentage of Tregs increased as early as 3 days after the onset of shock, while their absolute number remained lower than in healthy volunteers. A similar pattern of Tregs kinetics was found in infected and non infected patients. Though there was an inverse correlation between severity scores and Tregs percentage, the time course of Tregs was similar between survivors and non survivors. No relation between Tregs and cytokine concentration was found. In septic mice, although there was a rapid increase in Treg cells subset among splenocytes, antibody-induced depletion of Tregs before the onset of sepsis did not alter survival. CONCLUSIONS: These data argue against a determinant role of Tregs in inflammatory response and outcome during shock states

    A Soluble Form of the Triggering Receptor Expressed on Myeloid Cells-1 Modulates the Inflammatory Response in Murine Sepsis

    Get PDF
    The triggering receptor expressed on myeloid cells (TREM)-1 is a recently discovered receptor expressed on the surface of neutrophils and a subset of monocytes. Engagement of TREM-1 has been reported to trigger the synthesis of proinflammatory cytokines in the presence of microbial products. Previously, we have identified a soluble form of TREM-1 (sTREM-1) and observed significant levels in serum samples from septic shock patients but not controls. Here, we investigated its putative role in the modulation of inflammation during sepsis. We observed that sTREM-1 was secreted by monocytes activated in vitro by LPS and in the serum of animals involved in an experimental model of septic shock. Both in vitro and in vivo, a synthetic peptide mimicking a short highly conserved domain of sTREM-1 appeared to attenuate cytokine production by human monocytes and protect septic animals from hyper-responsiveness and death. This peptide seemed to be efficient not only in preventing but also in down-modulating the deleterious effects of proinflammatory cytokines. These data suggest that in vivo modulation of TREM-1 by sTREM peptide might be a suitable therapeutic tool for the treatment of sepsis

    Andreev scattering and Josephson current in a one-dimensional electron liquid

    Full text link
    Andreev scattering and the Josephson current through a one-dimensional interacting electron liquid sandwiched between two superconductors are re-examined. We first present some apparently new results on the non-interacting case by studying an exactly solvable tight-binding model rather than the usual continuum model. We show that perfect Andreev scattering (i.e. zero normal scattering) at the Fermi energy can only be achieved by fine-tuning junction parameters. We also obtain exact results for the Josephson current, which is generally a smooth function of the superconducting phase difference except when the junction parameters are adjusted to give perfect Andreev scattering, in which case it becomes a sawtooth function. We then observe that, even when interactions are included, all low energy properties of a junction (E<<\Delta, the superconducting gap) can be obtained by "integrating out" the superconducting electrons to obtain an effective Hamiltonian describing the metallic electrons only with a boundary pairing interaction. This boundary model provides a suitable starting point for bosonization/renormalization group/boundary conformal field theory analysis. We argue that total normal reflection and total Andreev reflection correspond to two fixed points of the boundary renormalization group. For repulsive bulk interactions the Andreev fixed point is unstable and the normal one stable. However, the reverse is true for attractive interactions. This implies that a generic junction Hamiltonian (without fine-tuned junction parameters) will renormalize to the normal fixed point for repulsive interactions but to the Andreev one for attractive interactions. An exact mapping of our tight-binding model to the Hubbard model with a transverse magnetic field is used to help understand this behavior.Comment: revtex, 17 pages, 5 postscript figure

    Bi-Modal Person Recognition on a Mobile Phone: using mobile phone data

    Get PDF
    This paper presents a novel fully automatic bi-modal, face and speaker, recognition system which runs in real-time on a mobile phone. The implemented system runs in real-time on a Nokia N900 and demonstrates the feasibility of performing both automatic face and speaker recognition on a mobile phone. We evaluate this recognition system on a novel publicly-available mobile phone database and provide a well defined evaluation protocol. This database was captured almost exclusively using mobile phones and aims to improve research into deploying biometric techniques to mobile devices. We show, on this mobile phone database, that face and speaker recognition can be performed in a mobile environment and using score fusion can improve the performance by more than 25% in terms of error rates

    Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation

    Get PDF
    Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation, we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8(+) sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large-pore ion channels to specifically block nociceptors, substantially reduced ovalbumin- or house-dust-mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce the release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4(+) and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma

    Testing for the Dual-Route Cascade Reading Model in the Brain: An fMRI Effective Connectivity Account of an Efficient Reading Style

    Get PDF
    Neuropsychological data about the forms of acquired reading impairment provide a strong basis for the theoretical framework of the dual-route cascade (DRC) model which is predictive of reading performance. However, lesions are often extensive and heterogeneous, thus making it difficult to establish precise functional anatomical correlates. Here, we provide a connective neural account in the aim of accommodating the main principles of the DRC framework and to make predictions on reading skill. We located prominent reading areas using fMRI and applied structural equation modeling to pinpoint distinct neural pathways. Functionality of regions together with neural network dissociations between words and pseudowords corroborate the existing neuroanatomical view on the DRC and provide a novel outlook on the sub-regions involved. In a similar vein, congruent (or incongruent) reliance of pathways, that is reliance on the word (or pseudoword) pathway during word reading and on the pseudoword (or word) pathway during pseudoword reading predicted good (or poor) reading performance as assessed by out-of-magnet reading tests. Finally, inter-individual analysis unraveled an efficient reading style mirroring pathway reliance as a function of the fingerprint of the stimulus to be read, suggesting an optimal pattern of cerebral information trafficking which leads to high reading performance

    The improbable transmission of Trypanosoma cruzi to human: the missing link in the dynamics and control of Chagas disease

    Get PDF
    Chagas disease has a major impact on human health in Latin America and is becoming of global concern due to international migrations. Trypanosoma cruzi, the etiological agent of the disease, is one of the rare human parasites transmitted by the feces of its vector, as it is unable to reach the salivary gland of the insect. This stercorarian transmission is notoriously poorly understood, despite its crucial role in the ecology and evolution of the pathogen and the disease. The objective of this study was to quantify the probability of T. cruzi vectorial transmission to humans, and to use such an estimate to predict human prevalence from entomological data. We developed several models of T. cruzi transmission to estimate the probability of transmission from vector to host. Using datasets from the literature, we estimated the probability of transmission per contact with an infected triatomine to be 5.8x10(-4) (95%CI: [2.6; 11.0] x 10(-4)). This estimate was consistent across triatomine species, robust to variations in other parameters, and corresponded to 900-4,000 contacts per case. Our models subsequently allowed predicting human prevalence from vector abundance and infection rate in 7/10 independent datasets covering various triatomine species and epidemiological situations. This low probability of T. cruzi transmission reflected well the complex and unlikely mechanism of transmission via insect feces, and allowed predicting human prevalence from basic entomological data. Although a proof of principle study would now be valuable to validate our models' predictive ability in an even broader range of entomological and ecological settings, our quantitative estimate could allow switching the evaluation of disease risk and vector control program from purely entomological indexes to parasitological measures, as commonly done for other major vector borne diseases. This might lead to different quantitative perspectives as these indexes are well known not to be proportional one to another

    Widening of the genetic and clinical spectrum of Lamb-Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency

    Get PDF
    Purpose Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene encoding a transcription factor regulating cell fate and differentiation in neurogenesis and other discrete developmental processes. The genetic alterations described so far are mainly microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its clinical and genetic spectrum, and the pathophysiological mechanisms involved. Methods Clinical and genetic data were collected through GeneMatcher and clinical or genetic networks for 41 novel patients harboring various types ofSOX5 alterations. Functional consequences of selected substitutions were investigated. Results Microdeletions and truncating variants occurred throughout SOX5. In contrast, most missense variants clustered in the pivotal SOX-specific high-mobility-group domain. The latter variants prevented SOX5 from binding DNA and promoting transactivation in vitro, whereas missense variants located outside the high-mobility-group domain did not. Clinical manifestations and severity varied among patients. No clear genotype-phenotype correlations were found, except that missense variants outside the high-mobility-group domain were generally better tolerated. Conclusions This study extends the clinical and genetic spectrum associated with LAMSHF and consolidates evidence that SOX5 haploinsufficiency leads to variable degrees of intellectual disability, language delay, and other clinical features

    Characterization of the Dispersal of Non-Domiciliated Triatoma dimidiata through the Selection of Spatially Explicit Models

    Get PDF
    Chagas disease is one of the most important neglected diseases in Latin America. Although insecticides have been successfully sprayed to control domiciliated vector populations, this strategy has proven to be ineffective in areas where non-domiciliated vectors immigrating from peridomestic or sylvatic ecotopes can (re-)infest houses. The development of strategies for the control of non-domiciliated vectors has thus been identified by the World Health Organization as a major challenge. Such development primarily requires a description of the spatio-temporal dynamics of infestation by these vectors, and a good understanding of their dispersal. We combined for the first time extensive spatio-temporal data sets describing house infestation dynamics by Triatoma dimidiata inside one village, and spatially explicit population dynamics models. The models fitted and predicted remarkably the observed infestation dynamics. They thus provided both key insights into the dispersal of T. dimidiata in this area, and a suitable mathematical background to evaluate the efficacy of various control strategies. Interestingly, the observed and modelled patterns of infestation suggest that interventions could focus on the periphery of the village, where there is the highest risk of transmission. Such spatial optimization may allow for reducing the cost of control, compensating for repeated interventions necessary for non-domiciliated vectors
    corecore