10 research outputs found

    Cone beam computed tomography in the assessment of TMJ deformity in children with JIA: repeatability of a novel scoring system

    Get PDF
    Background The temporomandibular joint (TMJ) is frequently involved in juvenile idiopathic arthritis (JIA). Diag‑ nostic imaging is necessary to correctly diagnose and evaluate TMJ involvement, however, hitherto little has been published on the accuracy of the applied scoring systems and measurements. The present study aims to investigate the precision of 20 imaging features and fve measurements based on cone beam computed tomography (CBCT). Methods Imaging and clinical data from 84 participants in the Norwegian study on juvenile idiopathic arthritis, the NorJIA study, were collected. Altogether 20 imaging features and fve measurements were evaluated indepen‑ dently by three experienced radiologists for intra- and interobserver agreement. Agreement of categorical variables was assessed by Fleiss’, Cohen’s simple or weighted Kappa as appropriate. Agreement of continuous variables was assessed with 95% limits of agreement as advised by Bland and Altman. Results “Overall impression of TMJ deformity” showed almost perfect intraobserver agreement with a kappa coef‑ fcient of 0.81 (95% CI 0.69–0.92), and substantial interobserver agreement (Fleiss’ kappa 0.70 (0.61–0.78)). Moreover, both “fattening” and “irregularities” of the eminence/fossa and condyle performed well, with intra- and interobserver agreements of 0.66–0.82 and 0.55–0.76, respectively. “Reduced condylar volume” and “continuity” of the fossa/emi‑ nence had moderate intra- and interobserver Kappa values, whereas continuity of the condyle had Kappa values above 0.55. Measurements of distances and angles had limits of agreement of more than 15% of the sample mean. Conclusions We propose a CBCT-based scoring system of nine precise imaging features suggestive of TMJ deformity in JIA. Their clinical validity must be tested

    Cone beam computed tomography in the assessment of TMJ deformity in children with JIA: repeatability of a novel scoring system

    Get PDF
    Background The temporomandibular joint (TMJ) is frequently involved in juvenile idiopathic arthritis (JIA). Diagnostic imaging is necessary to correctly diagnose and evaluate TMJ involvement, however, hitherto little has been published on the accuracy of the applied scoring systems and measurements. The present study aims to investigate the precision of 20 imaging features and five measurements based on cone beam computed tomography (CBCT). Methods Imaging and clinical data from 84 participants in the Norwegian study on juvenile idiopathic arthritis, the NorJIA study, were collected. Altogether 20 imaging features and five measurements were evaluated independently by three experienced radiologists for intra- and interobserver agreement. Agreement of categorical variables was assessed by Fleiss’, Cohen’s simple or weighted Kappa as appropriate. Agreement of continuous variables was assessed with 95% limits of agreement as advised by Bland and Altman. Results “Overall impression of TMJ deformity” showed almost perfect intraobserver agreement with a kappa coefficient of 0.81 (95% CI 0.69–0.92), and substantial interobserver agreement (Fleiss’ kappa 0.70 (0.61–0.78)). Moreover, both “flattening” and “irregularities” of the eminence/fossa and condyle performed well, with intra- and interobserver agreements of 0.66–0.82 and 0.55–0.76, respectively. “Reduced condylar volume” and “continuity” of the fossa/eminence had moderate intra- and interobserver Kappa values, whereas continuity of the condyle had Kappa values above 0.55. Measurements of distances and angles had limits of agreement of more than 15% of the sample mean. Conclusions We propose a CBCT-based scoring system of nine precise imaging features suggestive of TMJ deformity in JIA. Their clinical validity must be tested.publishedVersio

    AFFIRM – a multiplexed immunoaffinity platform that combines recombinant antibody fragments and LC-SRM analysis

    No full text
    Targeted measurements of low abundance proteins in complex mixtures are in high demanded in many areas, not the least in clinical applications measuring biomarkers. We here present the novel platform AFFIRM (AFFInity sRM) that utilizes the power of antibody fragments (scFv) to efficiently enrich for target proteins from a complex background and the exquisite specificity of an SRM-MS based detection. To demonstrate the ability of AFFIRM, three target proteins of interest were measured in a serum background in single- and multiplexed experiments in a concentration range of 5-1000 ng/ml. Linear responses were demonstrated down to low ng/ml concentrations with high reproducibility. The platform allows for high throughput measurements in 96-well format and all steps are amendable to automation and scale-up. We believe the use of recombinant antibody technology in combination with SRM MS analysis provides a powerful way to reach sensitivity, specificity and reproducibility as well as the opportunity to build resources for fast on demand implementation of novel assays

    Cone beam computed tomography in the assessment of TMJ deformity in children with JIA: repeatability of a novel scoring system

    Get PDF
    Abstract Background The temporomandibular joint (TMJ) is frequently involved in juvenile idiopathic arthritis (JIA). Diagnostic imaging is necessary to correctly diagnose and evaluate TMJ involvement, however, hitherto little has been published on the accuracy of the applied scoring systems and measurements. The present study aims to investigate the precision of 20 imaging features and five measurements based on cone beam computed tomography (CBCT). Methods Imaging and clinical data from 84 participants in the Norwegian study on juvenile idiopathic arthritis, the NorJIA study, were collected. Altogether 20 imaging features and five measurements were evaluated independently by three experienced radiologists for intra- and interobserver agreement. Agreement of categorical variables was assessed by Fleiss’, Cohen’s simple or weighted Kappa as appropriate. Agreement of continuous variables was assessed with 95% limits of agreement as advised by Bland and Altman. Results “Overall impression of TMJ deformity” showed almost perfect intraobserver agreement with a kappa coefficient of 0.81 (95% CI 0.69–0.92), and substantial interobserver agreement (Fleiss’ kappa 0.70 (0.61–0.78)). Moreover, both “flattening” and “irregularities” of the eminence/fossa and condyle performed well, with intra- and interobserver agreements of 0.66–0.82 and 0.55–0.76, respectively. “Reduced condylar volume” and “continuity” of the fossa/eminence had moderate intra- and interobserver Kappa values, whereas continuity of the condyle had Kappa values above 0.55. Measurements of distances and angles had limits of agreement of more than 15% of the sample mean. Conclusions We propose a CBCT-based scoring system of nine precise imaging features suggestive of TMJ deformity in JIA. Their clinical validity must be tested

    Generation and analyses of human synthetic antibody libraries and their application for protein microarrays

    No full text
    Antibody-based proteomics offers distinct advantages in the analysis of complex samples for discovery and validation of biomarkers associated with disease. However, its large-scale implementation requires tools and technologies that allow development of suitable antibody or antibody fragments in a high-throughput manner. To address this we designed and constructed two human synthetic antibody fragment (scFv) libraries denoted HelL-11 and HelL-13. By the use of phage display technology, in total 466 unique scFv antibodies specific for 114 different antigens were generated. The specificities of these antibodies were analyzed in a variety of immunochemical assays and a subset was further evaluated for functionality in protein microarray applications. This high-throughput approach demonstrates the ability to rapidly generate a wealth of reagents not only for proteome research, but potentially also for diagnostics and therapeutics. In addition, this work provides a great example on how a synthetic approach can be used to optimize library designs. By having precise control of the diversity introduced into the antigen-binding sites, synthetic libraries offer increased understanding of how different diversity contributes to antibody binding reactivity and stability, thereby providing the key to future library optimization

    Advancing the global proteome survey platform by using an oriented single chain antibody fragment immobilization approach.

    No full text
    Increasing the understanding of a proteome and how its protein composition is affected by for example different diseases, such as cancer, has the potential to improve strategies for early diagnosis and therapeutics. The Global Proteome Survey or GPS is a method that combines mass spectrometry and affinity enrichment with the use of antibodies. The technology enables profiling of complex proteomes in a species independent manner. The sensitivity of GPS, and other methods relying on affinity enrichment, is largely affected by the activity of the exploited affinity reagent. We here present an improvement of the GPS platform by utilizing an antibody immobilization approach which ensures a controlled immobilization process of the antibody to the magnetic bead support. More specifically, we make use of an antibody format that enables site-directed biotinylation and use this in combination with streptavidin coated magnetic beads. The performance of the expanded GPS platform was evaluated by profiling yeast proteome samples. We demonstrate that the oriented antibody immobilization strategy increases the ability of the GPS platform and results in larger fraction of functional antibodies. Additionally, we show that this new antibody format enabled in-solution capture, i.e. immobilization of the antibodies after sample incubation. A workflow has been established that permit the use of an oriented immobilization strategy for the GPS platform
    corecore