16 research outputs found
IL-13 and IL-4, but not IL-5 nor IL-17A, induce hyperresponsiveness in isolated human small airways
BACKGROUND:Specific inflammatory pathways are indicated to contribute to severe asthma, but their individual involvement in the development of airway hyperresponsiveness remains unexplored. OBJECTIVE:This experimental study in human small bronchi aimed to provide insight into which of the type 2 and type 17 cytokines cause hyperresponsiveness of airway smooth muscle. METHODS:Explanted small bronchi isolated from human lung tissue and human airway smooth muscle cells were treated for 2 and 1 day(s), respectively, with 100 ng/mL of IL-4, IL-5, IL-13, or IL-17A, and contractile responses, Ca2+ mobilization, and receptor expression were assessed. RESULTS:Treatment with IL-13 increased the potency of histamine, carbachol, and leukotriene D4 as contractile agonists. IL-4, but not IL-5 or IL-17A, also increased the potency of histamine. In human airway smooth muscle cells, IL-13 and IL-4, but not IL-5 and IL-17A, enhanced the histamine-induced Ca2+ mobilization that was accompanied with increased mRNA expression of histamine H1 and cysteinyl leukotriene CysLT1 receptors. RNA sequencing of isolated bronchi confirmed the IL-13-mediated upregulation of H1 and CysLT1 receptors, without showing an alteration of muscarinic M3 receptors. Dexamethasone had no effects on IL-13-induced hyperresponsiveness in human bronchi, the increased Ca2+ mobilization, or the enhanced receptor expression. In contrast, antagonism of the common receptor for IL-13 and IL-4 by the biologic dupilumab prevented the effects of both IL-13 and IL-4 in human bronchi and human airway smooth muscle cells. CONCLUSIONS:The glucocorticoid-insensitive hyperrresponsiveness in isolated human airways induced by IL-13 and IL-4 provides further evidence that the IL-4Rα pathway should be targeted as a new strategy for the treatment of airway hyperresponsiveness in asthma.FWN – Publicaties zonder aanstelling Universiteit Leide
WNT signalling in prostate cancer
Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer
Exposure to an anti-androgenic herbicide negatively impacts reproductive physiology and fertility in Xenopus tropicalis
Amphibians are threatened on a global scale and pollutants may be contributing to population declines, but how chemicals impact on their reproduction is poorly understood. We conducted a life cycle analysis to investigate the impacts of early life exposure to two anti-androgens (exposure until completion of metamorphosis;stage 66): flutamide, (50 µg/L)/linuron (9 and 45 µg/L)) on sexual development and breeding competence in Xenopus tropicalis. Our analyses included: mRNA levels of dmrt1, cyp17, amh, cyp19, foxl2 and ar (tadpoles/metamorphs), gonadal histomorphology (metamorphs/adults), mRNA levels of ar/gr (adult male brain/gonad/forelimb), testosterone/corticosterone levels (adult males), secondary sexual characteristics (forelimb width/nuptial pad: adult males) and breeding competence (amplexus/fertility: adult males). Compared to controls, feminised sex ratios and increased number of spermatogonia (adults) were observed after exposure to flutamide and the lower linuron concentration. Exposure to the lower linuron concentration also resulted in demasculinisation of secondary sexual characteristics and reduced male fertility. Flutamide exposure resulted in masculinisation of the nuptial pad and elevated mRNA levels of dmrt1, cyp17, amh and foxl2 in brains (metamorphs). Testosterone levels were higher in all treatment groups, however, overall few effects were observed in response to the higher linuron concentration. Our findings advance understanding of reproductive biology of X. tropicalis and illustrate negative effects of linuron on reproductive processes at a concentration measured in freshwater environments
Dvl2-Dependent Activation of Daam1 and RhoA Regulates Wnt5a-Induced Breast Cancer Cell Migration
The Dishevelled (Dvl) and Dishevelled-associated activator of morphogenesis 1 (Daam1) pathway triggered by Wnt5a regulates cellular polarity during development and tissue homoeostasis. However, Wnt5a signaling in breast cancer progression remains poorly defined.We showed here that Wnt5a activated Dvl2, Daam1 and RhoA, and promoted migration of breast cancer cells, which was, however, abolished by Secreted Frizzled-related protein 2 (sFRP2) pretreatment. Dominant negative Dvl2 mutants or Dvl2 siRNA significantly decreased Wnt5a-induced Daam1/RhoA activation and cell migration. Ectopic expression of N-Daam1, a dominant negative mutant, or Daam1 siRNA remarkably inhibited Wnt5a-induced RhoA activation, stress fiber formation and cell migration. Ectopic expression of dominant negative RhoA (N19) or C3 exoenzyme transferase, a Rho inhibitor, decreased Wnt5a-induced stress fiber formation and cell migration.Taken together, we demonstrated for the first time that Wnt5a promotes breast cancer cell migration via Dvl2/Daam1/RhoA
Wnt5a Signaling — A New and Attractive Target for Specific Anticancer Therapy
Wnt signaling has been shown to engage a multifunctional pathway that is involved in the regulation of a wide variety of normal and pathologic processes, including embryogenesis, diff erentiation and tumorigenesis. Recent studies have demonstrated that Wnt5a expression is frequently seen in various human cancers. In contrast to the transforming members of the Wnt family, shown to be upregulated in many cancers, the role of Wnt5a is still controversial in its expression in different tumors. There is increasing evidence that Wnt5a has tumor suppressor function in some malignancies, and in addition, it elicits promigratory and proinvasive effects via the planar cell polarity pathway, which suggests that Wnt5a might be an effective marker for the progression and prognosis of tumors. Obviously, the outcome of Wnt5a signaling is dependent on a multitude of variables, ranging from receptors, downstream effectors and inhibitors, to external influences coming from the tumor microenvironment. This review will focus on the role of Wnt5a signaling and, as a consequence, provide an outline describing the expression and functions of Wnt5a in cancer progression