11 research outputs found

    Determination of structure tilting in magnetized plasmas - Time delay estimation in two dimensions

    Get PDF
    Time delay estimation (TDE) is a well-known technique to investigate poloidal flows in fusion plasmas. The present work is an extension of the earlier works of A. Bencze and S. Zoletnik 2005 and B. T\'al et al. 2011. From the prospective of the comparison of theory and experiment it seem to be important to estimate the statistical properties of the TDE based on solid mathematical groundings. This paper provides analytic derivation of the variance of the TDE using a two-dimensional model for coherent turbulent structures in the plasma edge and also gives an explicit method for determination of the tilt angle of structures. As a demonstration this method is then applied to the results of a quasi-2D Beam Emission Spectroscopy (BES) measurement performed at the TEXTOR tokamak.Comment: 8 pages, 10 figure

    Wide-angle Visible Video Diagnostics for JT-60SA utilizing EDICAM

    No full text
    A multi-purpose, wide-angle, visible overview video diagnostic, based on the EDICAM camera, was designed for JT-60SA superconducting tokamak, in order to fulfill both machine protection and scientific observation purposes. The detector is located inside the ‘port plug’ (a ca. 3 m long re-entrant tube), relatively close to the plasma boundary; the EDICAM can tolerate the magnetic field at this location as well as the radiation levels in the early phases of the experiment. A rail-and-carriage system is used to move the detector between the opening of the port plug and the measurement location. A 4-point docking system ensures the precise and robust positioning of the optics, firmly holding the detector also in the event of disruptions or earthquakes. The camera is running under atmospheric condition, separated by a sapphire window from the plasma vacuum. The vacuum window is protected by a water-cooled pin-hole from mechanical impacts and plasma heat; the pin-hole is also the first element of the detector’s optical system. The optics consists of two lens groups and a prism; the housing is made of stainless steel, in order to reduce eddy currents and thus avoid large forces acting on the system in a disruption

    The effect of ionization on the populations of excited levels of C IV and C V in tokamak edge plasmas

    No full text
    The main populating and depopulating mechanisms of the excited energy levels of ions in plasmas with densities <1023-1024 m-3 are electron collisional excitation from the ion's ground state and radiative decay, respectively, with the majority of the electron population being in the ground state of the ionization stage. Electron collisional ionization is predominately expected to take place from one ground state to that of the next higher ionization stage. However, the question arises as to whether, in some cases, ionization can also affect the excited level populations. This would apply particularly to those cases involving transient events such as impurity influxes in a laboratory plasma. An analysis of the importance of ionization in populating the excited levels of ions in plasmas typical of those found in the edge of tokamaks is undertaken for the C IV and C V ionization stages. The emphasis is on those energy levels giving rise to transitions of most use for diagnostic purposes (n≤5). Carbon is chosen since it is an important contaminant of JET plasmas; it was the dominant low Z impurity before the installation of the ITER-like wall and is still present in the plasma after its installation. Direct electron collisional ionization both from and to excited levels is considered. Distorted-wave Flexible Atomic Code calculations are performed to generate the required ionization cross sections, due to a lack of atomic data in the literature. Employing these data, ionization from excited level populations is not found to be significant in comparison with radiative decay. However, for some energy levels, ionization terminating in the excited level has an effect in the steady-state of the order of the measurement errors (±10%). During transient events, ionization to excited levels will be of more importance and must be taken into account in the calculation of excited level populations. More accurate atomic data, including possible resonance contributions to the cross sections, would tend to increase further the importance of these effects
    corecore