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Time delay estimation (TDE) is a well-known technique to investigate poloidal flows in fusion

plasmas. The present work is an extension of the earlier works of Bencze and Zoletnik [Phys. Plasmas

12, 052323 (2005)] and Tal et al. [Phys. Plasmas 18, 122304 (2011)]. From the prospective of the

comparison of theory and experiment, it seems to be important to estimate the statistical properties of

the TDE based on solid mathematical groundings. This paper provides analytic derivation of the

variance of the TDE using a two-dimensional model for coherent turbulent structures in the plasma

edge and also gives an explicit method for determination of the tilt angle of structures. As a

demonstration, this method is then applied to the results of a quasi-2D Beam Emission Spectroscopy

measurement performed at the TEXTOR tokamak. [http://dx.doi.org/10.1063/1.4812372]

I. INTRODUCTION

Turbulence plays a key role in the transport of energy

and particles in hot magnetized plasmas,1 but it is still not

completely understood, despite intensive scientific investiga-

tion. Numerical simulations have shown that sheared flows

play have a significant role in the controlling plasma turbu-

lence,2 while one of the most significant experimental results

of the last couple of years is the discovery of quasi-station-

ary3,4 and oscillating flows (zonal flows).5

It is believed that the tilting of eddies could have a

significant impact on the excitation of sheared flows.6

Momentum transfer from turbulent structures to the main flow

can be described by a negative eddy viscosity.7 One of the

requirements for this negative viscosity behavior is the presence

of some kind of irregularities in the spatial distribution of turbu-

lent eddies such as non-circular shape and tilt. Structures are

inherently tilted in the radial-poloidal plane since their emer-

gence (aB–balooning angle) and are further tilted by the sheared

flows, resulting in a time dependent tilt angle (a).10 Theoretical

studies of the ion temperature gradient driven (ITG) modes in

toroidal geometry highlighted that this ballooning angle deter-

mines the linear growth rate of the instability as c / cos aB,9

showing that the strongest modes are less tilted. Therefore, the

accurate measurement of the ballooning angle can give insight

in the mode dynamics of the underlying instability.

The main goal of the present work is to give a well

grounded time delay estimate (TDE) based method for the

experimental estimation of the time evolution of coherent

structure parameters, including the tilt angle in case of mod-

erately sheared flows, where the structure parameters can be

considered constant between observation points. In this dis-

cussion, the nonlinear interaction between coherent

structures is neglected, despite the fact that edge plasma

interactions are mainly nonlinear, as correlation and TDE

techniques rely on the assumption that events are independ-

ent. Thus it can recover the linear and quasi-linear behavior

of the plasma. Our discussion includes the mathematical der-

ivation of the expected TDE and its variance in two dimen-

sions as well as the standard deviation of the tilt angle. The

results are applicable for the calculation of the coherent

structure parameters and flow modulations together with

their errors, thus determining the significance of changes.

The outline of the paper is as follows. In Sec. II, the

mathematical model will be described, along with its statisti-

cal properties. The analytical results are then compared

against simulations in Sec. III. Finally, in Sec. IV the model

will be applied to quasi-2D BES data from the TEXTOR

tokamak as a demonstration.

II. MATHEMATICAL MODEL

Our goal is to give a heuristic description of coherent

density structures in the edge plasma. For this, we will

assume a dominant scale on which coherent structures

emerge—in accordance with the experiments, which filter

out small scale (<1 cm) and short-living fluctuations—and

these structures take part in no significant nonlinear interac-

tion during the timescale of the measurement (Oð5 lsÞ).
For our analytic calculations, we adopted a simple

model, which assumes that the fluctuation of the plasma den-

sity is composed of small coherent structures. These have

both Gaussian spatial distribution (in the direction of both

their axes) and a Gaussian time decay as experiments have

shown that edge and core coherent structures exhibit

Gaussian-like shape8 (unlike scrape-off layer (SOL) structures

which can be highly asymmetric). The model also assumes

that the coherent structures move at a constant velocity and

have the same size and orientation. These assumptions area)Email: guszejnov@reak.bme.hu.
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generally true for neighboring observation channels of turbu-

lence measurements—as the distance between them is usually

1-2 cm—except for the cases of strongly sheared flows. This

means that the density fluctuation caused by structure i (ni)

can be expressed as

niðu;w; tÞ¼Gðu;uiþ vuðt� tiÞ;rUÞ�Gðw;wiþ vwðt� tiÞ;rWÞ
�Gðt; ti;rTÞ; (1)

where u, w are coordinates in the coordinate system defined

by the axes (Fig. 1), vu; vw are the projected velocity compo-

nents in these directions, while Gðx; xi; rxÞ denotes a

Gaussian function defined as

Gðx; x0; rÞ ¼
1ffiffiffiffiffiffi
2p
p

r
e
�ðx�x0Þ2

2r2 : (2)

If N structures are present in the vicinity of two observa-

tion points (½ua; wa� and ½ub; wb�), then—assuming linearity—

the local density can be written as

nðu;w; tÞ ¼
XN

i¼1

niðu;w; tÞ: (3)

From Eq. (3), the cross correlation between the signals meas-

ured at point A and B can be formally expressed as

Cðua;wa; ub;wb; tÞ ¼ ðnðua;wa; tÞ � nðua;wa; tÞÞðnðub;wb; tþ sÞ � nðub;wb; tþ sÞÞ; (4)

where the overline means time averaging as f ðtÞ
¼ 1=DT

Ð DT=2

�DT=2
f ðtÞdt.

A. Assumptions

Let us assume that there is a significantly large number

of structures so that a statistical description is appropriate.

For this description, it is essential to know the distribution of

the structure parameters (u0; w0; t0). In our model, we take

these to be independent, uniform random variables, thus, the

probability density function is

Pðt0Þ ¼
1

DT
� DT=2 � t0 � DT=2

0 otherwise:

8<
: (5)

A similar expression can be given for u0 and w0, but a physi-

cal meaning is still necessary, thus, we attribute DT to the

time length of the experimental signal, and DU; DW are the

spatial extents of the observed poloidal plane. Due to the fact

that the coherent structures vanish at much smaller than the

size of the poloidal plane and the time length of the

measurement, temporal, and spatial averages can be taken as

infinite integrals (e.g.,
Ð DT=2

�DT=2
f ðtÞPðtÞdt �

Ð1
�1 f ðtÞPðtÞdt).

To simplify further calculations, let us rewrite Eq. (4) as

Ca;bðsÞ � Cðua;wa; ub;wb; sÞ

¼ ðnaðtÞ � naðtÞÞðnbðtþ sÞ � nbðtþ sÞÞ
¼ naðtÞnbðtþ sÞ � naðtÞ � nbðtþ sÞ: (6)

To reduce the complexity of future formulas let us also

define the following quantity:

j2 � 1

r2
T

þ v2
u

r2
U

þ v2
w

r2
W

; (7)

which is the inverse of the characteristic decorrelation

time.11

B. Expected value of the total correlation function

Using Eqs. (3) and (6), the expected value of the cross

correlation function (CCF) can be calculated, leading to the

following expression:

hCa;bðsÞi ¼ Nhcai;bi
ðsÞi þ NðN � 1Þhcai;bj

ðsÞi
�Nhsai

sbi
i � NðN � 1Þhsai

ihsbj
i; (8)

where

sai
� naðui;wi; tÞ (9)

is the average contribution of the ith structure to the density

in observation point A, and

cai;bj
ðsÞ � naðui;wi; ti; tÞnbðuj;wj; tj; tþ sÞ (10)

is the contribution to the CCF originating from two different

coherent structures, called pair correlation function. The
FIG. 1. Coordinate system used for the modeling of coherent structures,

including the observation points.
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individual terms of Eq. (8) can be easily evaluated as they

are basically Gaussian integrals. Thus,

sai
¼

ffiffiffiffiffiffi
2p
p

DTj
e
�
ðwi�wsða;iÞÞ2ðv2

ur2
T
þr2

U
Þ

2j2r2
T

r2
U

r2
W e

� ðua�uiÞ2

2ðv2
ur2

T
þr2

U
Þ; (11)

where

wsða; iÞ � wa þ
vuvwr2

T

v2
ur

2
T þ r2

U

ðui � uaÞ: (12)

Meanwhile, the pair correlation function for two struc-

tures is

cai;bj
ðsÞ ¼

ffiffiffi
p
p

jDT
Ai;jfi;jðsÞ; (13)

where

Ai;j �
DT2j2

2p
sai

sbj
; (14)

fi;jðsÞ � e�
1
4
j2ðs�si;jÞ2 ; (15)

and

si;j � ðtj � tiÞ þ
vu

j2r2
U

ðui � uj þ ub � uaÞ

þ vw

j2r2
W

ðwi � wj þ wb � waÞ: (16)

As the previous equations have shown, the results are

rather complex, although still Gaussian. From now on only,

the most essential formulas will be presented to conserve

space and allow the reader to follow the derivation. It fol-

lows from Eq. (8) that the expected value of the CCF is

hCa;bðsÞi ¼ N
p3=2rTrUrW

DTDUDW
e
�

v2r2
T

sin2bþdu2r2
W
þdw2r2

U

4j2r2
T

r2
U

r2
W

� e�
1
4
j2ðs�hD̂iÞ2 � 2

ffiffiffi
p
p

jDT

� �
; (17)

where du � ub � ua; dw � wb � wa, and j is set according

to Eq. (7), while hD̂i is the expected time delay—the central

quantity of the paper–—which will be defined in Eq. (19) of

Sec. II C. We also introduced b, which is the angle between

the velocity vector ([vu; vw]) and the vector defined by the

observation points ([du; dw]), and dl which is the distance

between the observation points (see Fig. 1).

Equation (17) also shows that j is in fact the characteris-

tic time delay scale on which correlation vanishes, thus, j is

the decorrelation time.

C. Time delay estimation and its variance

In signal processing, the position of the CCF peak—

from now on referred to as TDE—is essential in determining

several key parameters of the turbulent structures (see Sec.

IV). The TDE (denoted as D̂) can be derived by solving

dCa;b

ds

����
s¼D̂

¼
X

i;j

dcai;bj

ds

����
s¼D̂

¼ 0: (18)

Using Eq. (17), the expected TDE ðhD̂iÞ becomes

hD̂i ¼

vudu

r2
U

þ vwdw

r2
W

j2
; (19)

where j is defined according to Eq. (7), vu ¼ vz sin aþ
vr cos a; vw ¼ vz cos a� vr sin a; du ¼ dz sin aþ dr cos a and

dw ¼ dz cos a� dr sin a (see Fig. 1).

It should be noted that a similar result was derived for

the case of a single elliptical structure by Fedorczak et al.,13

which can be considered the rT !1 limit of this result. It

can be shown that Eq. (19) remains valid for not only

Gaussian, but any other spatio-temporal distributions with el-

liptical contour surfaces.

The determination of time dependent parameters (e.g.,

flow velocity) based on TDE methods implies the usage of

small time intervals for the calculation of cross-correlation

function with reasonable time resolution. Thus, a very valid

question can be formulated: what are the relevant parameters

determining the error (variance) of the calculation as a func-

tion of the time interval, or in other words for a given time

resolution (frequency) and given error how long the time

subintervals should be.

Based on the arguments in Ref. 12, it is reasonable to

assume that D̂ is close to hD̂i, which means that cai;bj
ðD̂Þ can

be approximated with a Taylor-series around hD̂i. Taking a

second order approximation of cai;bj
ðD̂Þ and substituting it

into Eq. (18) yields

X
i;j

dcai;bj

ds

����
s¼hD̂i

¼
X

i;j

dcai;bj

ds

����
s¼hD̂i

þ
X

i;j

d2cai;bj

ds2

����
s¼hD̂i
ðD̂ � hD̂iÞ ¼ 0: (20)

Let us define the following quantity:

Dsi;j � si;j � hD̂i; (21)

which is the difference between the position of the peak of

the pair correlation function and the expected TDE. Using

Eq. (21), we can derive D̂ � hD̂i. Substituting the form of

Eq. (13) and introducing Bi;j � fi;jðhD̂iÞ yields

D̂ � hD̂i ¼

X
i;j

Ai;jBi;jDsi;jX
i;j

Ai;jBi;j
Dsi;j

r2
� 1

� � : (22)

Equation (22) is rather complex, and our goal is to cal-

culate its first and second moments, where we expect the first

moment to be zero, while the second moment will be the var-

iance of the TDE. Since D̂ � hD̂i is small, it is possible to

expand the expression as

Y

X
¼ Y

1

hXi �
1

hXi2
ðX � hXiÞ þ :::

 !
; (23)
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where we denoted the denominator of Eq. (22) as X and the

numerator as Y. It can be shown that in the N !1 limit

hðX � hXiÞ2i 	 O 1

jDT

� �
hXi2; (24)

where 1
jDT ¼

1
DTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

r2
T

þ v2
u

r2
U

þ v2
w

r2
W

q 
 1. This means that a low order

estimation around the expected value would be sufficient. It

is of course just an intuitive argument as Y and X are not in-

dependent in this case (see Eq. (22)). In the N !1 limit,

the first moment of Eq. (22) gives zero in all orders of expan-

sion as all terms are O 1
N

� 	
or lower, while the second

moment gives a finite value in zeroth order. It should be

noted that taking only the zeroth order term is identical to

assuming that the nominator (Y) and denominator (X) of Eq.

(22) are independent. This gives the following expression for

the TDE variance in the high density limit:

r2
0ðD̂Þ ¼

ffiffiffi
p
2

r
j5DTr2

T

du2

r2
U

þ dw2

r2
W

þ dl2r2
Tv2

r2
Ur2

W

sin2b

" #
; (25)

where b and dl are the same as in Eq. (17) (see Fig. 1).

As in zeroth order, the velocity is inversely proportional

to the TDE; its error can be estimated as

rv � v
hD̂i
r0

/ 1=DT; (26)

which clearly shows the trade-off between the accuracy of

the velocity estimation and the frequency resolution.

The results in this section can be considered two-

dimensional generalizations of the model presented in Ref.

12, but derived without further approximations.

III. COMPARISON WITH SIMULATION

To arrive at the result Eq. (25), we have employed a

number of approximations, thus, to test the correctness of

our analytical predictions for the TDE variance, a numerical

simulation code was developed in Matlab, which directly

simulated the model depicted in Sec. II, then calculated the

TDE and the orientation angle from the simulated signals.

The simulation was rerun with a multitude of random initial

conditions from which the statistics of the TDE and the tilt

angle were derived. The structure parameters used by the

simulation are detailed in Table I.

To study the transition into the high density limit, it is

useful to define the filling quantity, which is the ratio of the

volume occupied by coherent structures in parameter space

to its total volume

filling � ð8NrTrUrWÞ=ðDUDWDTÞ: (27)

The filling value can be considered a time average of the so-

called packing fraction, which is the fraction of the poloidal

surface occupied by coherent structures.

Fig. 2 shows the standard variation of the TDE as the

filling increases. It is apparent from Fig. 2 that the deviation

of the TDE reaches the high density limit even for very low

filling values (	2%), thus using the high density limit is jus-

tified in experimental situations, where the filling value is

usually 	10%.14

The parameter dependence of Eq. (25) was also vali-

dated against simulations as shown on Figs. 3–5.

It should be noted that the perturbations of the model

discussed in Sec. II are non-physical in the sense that their

spatial average is not zero, thus violating particle conserva-

tion. A better model would be, if the spatial distribution of

coherent structures was not simply Gaussian, but polynomial

times Gaussian. The simplest of such models is

niðu;w; tÞ ¼ nGauss
i ð1� û2 � ŵ2Þ; (28)

TABLE I. Default parameters of numerical simulation.

DT 2400 ls rT 50 ls

Du 200 cm rU 2 cm

Dw 30 cm rW 1 cm

vx 0 m=s dx 1 cm

vy 1000 m=s dy 1 cm

a p=6

FIG. 2. Standard deviation of TDE using simulation results for different fill-

ing values (blue dots) compared to analytical prediction in the high density

limit (Eq. (25)–red line). Filling is defined according to Eq. (27).

FIG. 3. Standard deviation of TDE in the high density limit as a function of

b (see Fig. 1) according to simulation (blue dots) and analytical formula (red

line).
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where nGauss
i is the density perturbation from Eq. (1), while

û2 and ŵ2 are the exponents of their respective Gaussians.

Carrying out the analysis of Sec. II for this model would be

challenging as the complexity of the previous formulas

would drastically increase. Meanwhile, numerical simula-

tions showed that using this more accurate model causes no

significant deviation from the TDE calculated in Sec. II.

A. Standard deviation of orientation angle

The TDE (Eq. (19)) of the correlation function depends

on the tilt angle of structures (a on Fig. 1) thus by measuring

the TDE a—among other parameters—could be determined

(see Sec. IV). However, to ascertain the validity of those cal-

culations knowing the variance of the calculated a is neces-

sary. Using a linear estimation

Da ¼ da

dD̂
rðD̂Þ þ Oðr2ðD̂ÞÞ: (29)

From Eq. (19), the derivative can be easily calculated

da

dD̂
¼ dD̂

da

� ��1

¼ j2

1

r2
U

� 1

r2
W

� �
ðdwvu þ duvw � 2D̂vuvwÞ

:

(30)

Using this result and Eq. (29), the high density limit of the

standard deviation of a yields

r0ðaÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
2

r
jDTrT

vuuut
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du2

r2
U

þ dw2

r2
W

þ dl2r2
Tv2

r2
Ur2

W

sin2b

s

1

r2
U

� 1

r2
W

� �
ðdwvu þ duvw � 2D̂vuvwÞ

:

(31)

Fig. 6 shows numerical results for different filling values

along with the high density limit of rðaÞ (Eq. (31)).

Although the analytical formula of Eq. (31) does not repro-

duce the simulation results perfectly—due to the linear esti-

mation used in Eq. (29)—it does give an order of magnitude

estimate on the standard deviation of the angle.

IV. APPLICATION TO TEXTOR DATA

The results from Sec. II allow a more detailed analysis

of measured turbulence signals, for instance, regarding the

orientation of coherent structures. As a demonstration, sev-

eral parameters of turbulent structures in the TEXTOR toka-

mak (R ¼ 1:75 m; a ¼ 0:47 m; limited, circular plasma;

ne ¼ 1019 m�3) were calculated. For that purpose measured

data from the Lithium Beam Emission Spectroscopy (Li-

BES)15,16 diagnostic was used. In the examined discharge

(#113917, Ip ¼ 350 kA; Bt ¼ �1:9 T), the diagnostic was in

“fast deflection mode,” which means that during the dis-

charge the beam was deflected by charged plates at high fre-

quency before neutralization. This method allows the

measurement of density fluctuations along not one but two

beam lines hence it is called a “quasi-2D” measurement17

(Fig. 7).

After calculating the cross-correlation between individ-

ual channels, the time delay had to be determined as well.

Unfortunately, one of the disadvantages of the quasi-2D

measurement is the greatly reduced time resolution (2:4 ls in

this case), which is of the same order of magnitude as the

time delays (Oð3 lsÞ). Thus, the position of the peak was

determined by fitting a parabola at the peak of the measured

signal.

FIG. 4. Standard deviation of TDE in the high density limit as a function of

the structure’s lifetime (rT) according to simulation (blue dots) and analyti-

cal formula (red line).

FIG. 5. Standard deviation of TDE in the high density limit as a function of

the structure’s major axis (rU) according to simulation (blue dots) and ana-

lytical formula (red line).

FIG. 6. Standard deviation of tilt angle values calculated from simulated sig-

nals for different filling values (blue dots) compared to the high density analyt-

ical prediction of Eq. (31) (red line). Filling is defined according to Eq. (27).
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A. Fitted results

In the model, we adopted the turbulent structures have 6

independent parameters (a; vr; vz; rT ; rU; rW). It is known

that the turbulent structures have a poloidal velocity of sev-

eral km/s-s, while the poloidal distance between observation

points are several cm-s, which implies a characteristic time

of flight of 10 ls, which is much shorter than the lifetime of

the structures (thus, we can take the rT !1 limit). This

simplify the expected TDE of formula of Eq. (19) to

hD̂i � vuduþ vwdw�2

v2
u þ v2

w�
2

; (32)

where � ¼ rU=rW is the elongation of the structure. This

means that only 4 parameters need to be fitted (a; vz; vr; �).
To be able to fit these parameters, the TDE of cross correla-

tions between 4 neighboring points (Fig. 8) was calculated (6

equations). As only the position differences of the observation

points matter in Eq. (19), the geometry of the quasi-2D mea-

surement is rather problematic due to the parallel lines, which

reduce the number of independent equations to 4 (see Fig. 9).

One could consider taking into account the CCFs

between far away points, but that is generally not feasible as

the signal-to-noise ratio would be too small for non-

neighboring points, while the parameters (e.g., velocity) are

not necessarily constant on larger scales (2 cm). Combined

with the non-linear relation between parameters and the

TDE in Eq. (19), fitting the TDEs by itself cannot provide a

unique solution for all parameters, but it can restrict their

possible values. According to our numerical tests—with

exact TDEs—taking the measured decorrelation time (j in

Eq. (17)) into account leads to unique solutions.

The parameters are fitted numerically using an iterative

method (standard Levenberg-Marquardt algorithm) from ran-

domly chosen initial parameters. The convergence is estab-

lished using v2
red < 1, where vred is the reduced v2. The errors

are calculated from the statistical error of the TDE and the sys-

tematic error of the calibration of distances between observed

points, which—in this case—are much more significant.

The fitting procedure also takes advantage of the fact

that coherent structures in the plasma edge primarily propa-

gate in the poloidal direction. In case of #113917, the zeroth

order approximation of their poloidal velocity is

vz � Dz=D̂ � 3:5 km=s, while the apparent radial velocity is

vapp
r ¼ Dr=D̂ � 10 km=s. This means that the high apparent

radial velocity can only be explained by the presence of a

tilt, which is responsible for the major part of vapp
r . This is

fortunate, because in general the effects of radial propagation

and structure tilt are hard to distinguish, but in this case the

effects of vr are negligible.

Figure 10 shows that the tilt angle of coherent structures is

around 10�–20�, while Fig. 9 shows there are other solutions

FIG. 7. Schematic of a quasi 2D measurement with Li BES.

FIG. 8. Measurement configuration for TEXTOR quasi 2D Li BES.

FIG. 9. Dependence of the TDE on the tilt angle in a realistic scenario. The

dashed lines show measured TDEs for #113917 around BES channel 6,

while the solid lines show TDE curves according to Eq. (19). The rest of the

parameters are taken from the results of the fitting procedure mentioned

before. Due to the measurement geometry, only 4 equations are independent,

of which only 3 are have significant angle dependence.

FIG. 10. Fitted poloidal velocities and tilt angles for TEXTOR discharge

#113917. The error bars are determined by v2
red � 1.
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around 90�. The reason these were discarded is that the TDE

changes around this value are very sharply (see Fig. 9), which

means that virtually no scatter in the orientation of structures

could be allowed in order to reproduce the measured TDEs.

The fitting also determined that � 2 ½1:9; 2:9�, which

means that the structures were significantly elongated.

It is important to note that at R > 220 cm, the velocity

gradient steepens drastically, causing a significant deforma-

tion of the structures, thus, violating the assumption of spa-

tially constant structure parameters between observed points,

thus, fitted parameters in that range are likely erroneous.

The fitting results were compared against the results

from the TEXTOR Correlation Reflectometry (CR).18 The

CR results show, that poloidal velocity at R ¼ 216 cm is

�3:2 km=s, while the tilt angle is 5.1�. Although there is a

discrepancy between this angle and Fig. 10, it is explained

by the fact that BES and CR measurements are carried out at

different poloidal positions.

V. CONCLUSION

TDE is one of the most commonly used method to study

turbulent structures in fusion plasmas. To describe the coherent

structures at the plasma edge, a simple two-dimensional

Gaussian model is considered, which can be seen as the gener-

alization of the model of Tal et al.12 The key statistical quanti-

ties of the model were calculated and it was established that in

the high density limit the variance of the CCF peak—the

TDE—is low, while its dependence on structure parameters is

relatively simple, making it a good candidate to determine the

parameters of coherent structures. A possible application of the

model was demonstrated on a TEXTOR discharge, where the

radial profiles of several key blob-parameters (poloidal veloc-

ity, tilt angle, elongation) were determined. A systematic appli-

cation of the method will be detailed in a follow-up publication.
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