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Synchrotron radiation images from runaway electrons (REs) in an ASDEX Upgrade
discharge disrupted by argon injection are analyzed using the synchrotron diagnostic
tool Soft and coupled fluid-kinetic simulations. We show that the evolution of the
runaway distribution is well described by an initial hot-tail seed population, which is
accelerated to energies between 25-50MeV during the current quench, together with an
avalanche runaway tail which has an exponentially decreasing energy spectrum. We find
that, although the avalanche component carries the vast majority of the current, it is
the high-energy seed remnant that dominates synchrotron emission. With insights from
the fluid-kinetic simulations, an analytic model for the evolution of the runaway seed
component is developed and used to reconstruct the radial density profile of the RE
beam. The analysis shows that the observed change of the synchrotron pattern from
circular to crescent shape is caused by a rapid redistribution of the radial profile of the
runaway density.

1. Introduction
Understanding runaway electron (RE) dynamics during tokamak disruptions is of

utmost importance for the successful operation of future high-current tokamaks, such
as ITER (Boozer 2015; Lehnen et al. 2015; Breizman et al. 2019). Disruptions are noto-
riously hard to diagnose, and existing numerical models cannot simultaneously capture
all aspects of their temporally and spatially multiscale nature, including the associated
runaway dynamics. Nevertheless, progress towards a reliable predictive capability requires
model validation, and therefore finding ways of connecting experimental observations
with theoretical predictions is essential.

A powerful and non-intrusive technique for diagnosing relativistic REs in tokamaks
is to measure their synchrotron radiation (Finken et al. 1990; Jaspers et al. 1993). The
toroidally asymmetric nature of the synchrotron radiation—due to being strongly biased
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in the direction of motion of the electrons—in addition to its continuum spectrum, help
differentiating it from background line radiation using spectral filtering. Recent develop-
ments of synthetic synchrotron diagnostics have allowed detailed analysis of experimental
synchrotron data. Most recently, in Tinguely et al. (2018a,b, 2019), synchrotron spectra,
images and polarisation data were analysed with the help of the synthetic diagnostic
Soft (Hoppe et al. 2018b) in a series of Alcator C-Mod discharges, providing valuable
constraints on runaway energy, pitch angle and radial density. Full-orbit simulations have
also recently provided deeper insight into observations of synchrotron radiation in 3D
magnetic fields (Carbajal & del Castillo-Negrete 2017; del Castillo-Negrete et al. 2018).

In this paper, we examine synchrotron emission from REs in discharge #35628 of the
ASDEX Upgrade tokamak, deliberately disrupted using an injection of neutral argon
(Pautasso et al. 2016). The injection of argon leads to a rapid cooling—a thermal
quench (TQ). As the TQ duration is shorter than the collision time at the critical
velocity for runaway acceleration, a fraction of the most energetic electrons takes too
long to thermalize and is left in the runaway region—a mechanism referred to as
hot-tail generation (Helander et al. 2004; Smith et al. 2005). During the subsequent
current quench (CQ), the initially trace runaway population gets exponentially multiplied
through large-angle collisions with the cold thermalized electrons in a runaway avalanche
(Rosenbluth & Putvinski 1997). As the RE beam forms, its synchrotron emission can be
observed using fast, wavelength-filtered visible light cameras. In this particular discharge,
a sudden transition of the synchrotron image from circular to crescent shape was observed
during the plateau phase. The probable cause of this spatial redistribution of the current
is a magnetic reconnection caused by a (1,1) magnetohydrodynamic (MHD) mode,
similarly to the observation by Lvovskiy et al. (2020) on the DIII-D tokamak, using
bremsstrahlung X-ray imaging.

We briefly review the relation between the runaway electron distribution function and
the observed synchrotron radiation pattern in section 2, then present the experimental
setup and parameters of the ASDEX Upgrade discharge analyzed in this paper. To
determine the spatiotemporal evolution of the runaway electron distribution, we use
a coupled fluid-kinetic numerical tool, that takes into account the evolution of the
electric field during the CQ self-consistently. This tool, based on coupling the fluid code
Go (Smith et al. 2006; Fehér et al. 2011; Papp et al. 2013) which captures the radial
dynamics, and the kinetic solver Code (Landreman et al. 2014; Stahl et al. 2016) that
models the momentum space evolution, is presented in section 3. The collision operator
used in Code includes detailed models of partial screening (Hesslow et al. 2018), which
is particularly important in this case, due to the presence of a large amount of partially
ionized argon.

Using the electron distribution function obtained by the coupled fluid-kinetic simula-
tion, we show in section 3 that the resulting synchrotron radiation, computed with Soft,
agrees well with the observed image, both regarding its shape, as well as the growth and
spatial distribution of the intensity. Furthermore, inspired by the numerical simulations,
we develop an analytical model, which is used in section 4, to reconstruct the radial
density profile of the RE beam. The analysis shows that the change of the synchrotron
pattern from circular to crescent shape is caused by a rapid redistribution of the radial
profile of the RE density.

2. Synchrotron radiation from runaway electrons
When observed using a fast camera, the synchrotron radiation emitted by runaway

electrons typically appears as a pattern on one side of the tokamak central column.
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The size and shape of the synchrotron pattern is directly related to the energy, pitch
and position of the runaway electrons—the runaway electron distribution function.
Disentangling such dependencies has been the subject of several studies (Pankratov 1996;
Zhou et al. 2014; Hoppe et al. 2018b,a); here we briefly review the aspects that are most
important for our present purposes.

2.1. Interpretation of the synchrotron pattern
Although runaway electrons tend to occupy a large region in momentum space, the

corresponding synchrotron pattern can often be well characterised with the energy and
pitch angle of the particle that has the highest contribution to the camera image. We
refer to these as the dominant or super particle of the pattern. We therefore define the
super particle as the momentum space location (p, θ) that maximises the quantity

Î = G(r, p, θ)f(r, p, θ)p2 sin θ, (2.1)

where f(r, p, θ) is the runaway electron distribution function and p2 sin θ is the momentum
space Jacobian in spherical coordinates. The Green’s function G(r, p, θ) quantifies the
radiation received by a camera from a particle on the orbit labelled by radius r, with
momentum p and pitch angle θ (given at the point along the orbit of weakest magnetic
field).

In present-day tokamaks the synchrotron spectra typically peak at infra-red wave-
lengths, and only a small fraction of the emitted intensity falls into the visible range.
The visible-light intensity is, however, usually sufficient to be clearly distinguished from
the background radiation, thus it is common to use visible-light cameras for synchrotron
radiation imaging. The observed short wavelength tail of the spectrum is exponentially
sensitive to the magnetic field strength (Hoppe et al. 2018a), causing the fraction of
emitted visible light to sometimes vary by orders of magnitude as an electron travels
from the low-field side to the high-field side of the tokamak. As a result, whenever the
synchrotron peak of the spectrum is located far from the spectral range of the camera, a
crescent-like pattern emerges, as illustrated in figure 1a.

In a fixed detector/magnetic field setup, this effect can be thought of as an indicator
of the runaway energy, as the peak wavelength of the synchrotron spectrum scales as
1/(γ2B sin θ), where γ is the Lorentz factor of the electron and B the magnetic field
strength.† A sketch of two typical pattern shapes at low and high runaway energy (relative
to the camera spectral range) are shown in figure 1a and b, respectively.

Figures 1a and b also illustrate another important consequence of changing the energy,
which is related to the guiding-center drift motion. At higher energies, the guiding-
center orbits shift significantly towards the outboard side of the tokamak, as does
the corresponding synchrotron pattern. Although the guiding-center drift motion is
routinely solved for in modern orbit following codes, accurately accounting for the
effects of drifts in simulations of synchrotron radiation images is non-trivial and has,
to our knowledge, previously only been employed in calculating the effect of synchrotron
radiation-reaction (Hirvijoki et al. 2015). The details of the recently implemented support
for guiding-center drifts in Soft are provided in Appendix A.

Synchrotron patterns are also sensitive to the spatial distribution of runaway electrons,
which will be utilised in Section 4. In Soft, toroidal symmetry is assumed, along with
that the poloidal transit time of a runaway is much shorter than the collision time. This

† While the peak also depends on pitch angle, the pitch angle additionally alters the vertical
and toroidal extent of the pattern, thus clearly distinguishing a change in energy from a change
in pitch angle.
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HFS LFS HFS LFS

r/a r/a

(a) Low energy (b) High energy (e) (f)

(c) Small beam (d) Large beam (g) Radial density (h) Radial density

Figure 1. (a/b) Illustration of how the runaway energy affects the observed synchrotron
pattern. At low energies, most radiation originates from the high-field side (HFS), while at
higher energies, a significant amount of radiation can also be seen on the low-field side (LFS).
(c/d) The runaway beam radius primarily determines the synchrotron pattern radius. (e/g)
Illustration of how the runaway radial density affects the synchrotron pattern (darker colours
indicate more radiation). (f) If the radial density is decreasing with r/a, as in (h), synchrotron
radiation from low energy runaways, such as in (a), could take on a more uniform intensity
distribution.

leaves the minor radius as a single spatial coordinate for the parametrization of guiding-
centre orbits, taken here to be the minor radius r where the electron passes through the
outer midplane.

The larger the radius of the runaway beam, the larger the size of the corresponding
synchrotron pattern, as illustrated in figures 1c and d. In a simulation with a runaway
population distributed radially in a series of rectangle functions, as in figure 1g, the
synchrotron pattern will be similar to the sketch in figure 1e, where darker colours
correspond to higher—and white to zero—observed intensity. Thus, each radial point
r contributes a thin band of radiation, weighted by the value of the distribution function
in that point. The semi-circular shape illustrates that, at low runaway energies, the
radiation intensity is greater on the high-field side (as in figure 1a) and at larger radii.
As a consequence, if the radial density decreases with r, as in figure 1h, the corresponding
synchrotron pattern can appear to have uniform intensity across all radii, as in figure 1f.

A large variety of synchrotron patterns have been reported in the literature, although
circular and crescent patterns seem to be among the more common ones. In this paper,
and in particular in section 4, we will analyse the transition from a circular synchrotron
pattern into a crescent pattern and find, as suggested above, that the transition is due
to a redistribution of the runaway density. Similar transitions have been observed before,
most recently by Lvovskiy et al. (2020) who observe a similar sub-millisecond transition
as observed here. Earlier reports also show that transitions from ellipses to crescents, and
vice versa, can occur over longer time scales in both disruptions (Hollmann et al. 2013)
and quiescent flat-top plasmas (England et al. 2013).
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(a) (b)

(c) (d)

Figure 2. Overview of the most relevant plasma parameters in ASDEX Upgrade discharge
#35628. (a) Total plasma current, with the smaller, zoomed-in figure showing a small secondary
current spike, (b) line-averaged electron density from central chord CO2 interferometry, (c)
electron temperature from central electron cyclotron emission (note that the temperature
decreases somewhat just before the disruption to approximately 4.7 keV), (d) ex-vessel hard
x-ray counts.

2.2. Experimental setup
ASDEX Upgrade is a medium-sized tokamak (major radius R = 1.65m, minor radius

a = 0.5m) located at the Max Planck Institute for Plasma Physics in Garching, Germany
(Meyer et al. 2019). An overview of plasma current, electron density, electron temperature
and the hard x-ray count rate in ASDEX Upgrade discharge #35628 is shown in figure 2.
This circular, L-mode discharge with 2.5MW ECRH core electron heating applied 100ms
before the disruption was deliberately triggered by injecting NAr ≈ 0.98 × 1021 argon
atoms into the plasma at t = 1 s. Due to the circular plasma shape, the plasma was
vertically stable during the discharge, consistent with diagnostic camera recordings.
About 3MW of ICRH heating was also applied for 200ms before the disruption, as part
of a different experiment, in a configuration where the power was poorly coupled. The
discharge developed a subsequent runaway plateau with a starting current of ≈ 200 kA
and a duration of ≈ 200ms. Before the disruption, the plasma current was Ip ≈ 800 kA,
the on-axis toroidal magnetic field was BT = 2.5T, the central electron temperature
was Te = 4.7 keV, and the central electron density was ne = 2.6× 1019 m−3. A drop
in electron temperature is observed shortly before the disruption due to internal mode
activity.

For the experiment, a Phantom V711 fast visible camera (connected to the in-vessel
optics with an image guide and housed in a shielding box near the tokamak (Yang
et al. 2013)) was equipped with a narrow-band wavelength filter with central wavelength
λ0 = 708.9 nm and FWHM of 8.6 nm. The filter wavelength was chosen as to minimise
background line radiation and emphasise the synchrotron radiation, which is emitted in a
continuous spectrum and had a higher intensity at longer wavelengths in these plasmas.
A simulation of the camera view in discharge #35628 based on a CAD model is shown in
figure 3a, with details of the configuration presented in table 1. We note that due to the
lack of reliable post-disruption magnetic equilibrium reconstructions, we use the more
accurate pre-disruption magnetic equilibrium reconstructions from Cliste (McCarthy
1999) for our synchrotron simulations.

A few milliseconds after the gas has been injected, a circular synchrotron pattern
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Parameter Value

Position (X,Y, Z) (0.685,−2.300,−0.120)m
Viewing direction (nx, ny, nz) (0.257, 0.964, 0.061)
Vision angle 0.675 rad
Roll angle 0.1 rad (clockwise)
Spectral range 708.9 nm (FWHM 8.6 nm)
Frame rate 1 kHz
Frame resolution 400× 400 pixels

Table 1. Parameters of the image recorded by a Phantom v711 visible light camera, which
was used for synchrotron radiation imaging. Only parameters relevant to synthetic diagnostic
simulation are shown.

appears in the visible light camera images. During the next ∼ 20ms, in the runaway
plateau phase of the disruption, the synchrotron pattern is observed to gradually increase
in brightness while maintaining approximately the same size and shape. Eventually, the
pattern attains its maximum brightness near t = 1.029 s, shown in figure 3b. In the very
next frame, at t = 1.030 s the synchrotron pattern has been turned into a crescent shape,
as shown in figure 3c. Around this time, a modest 5 kA spike is observed in the total
plasma current, shown in figure 2a, corresponding roughly to a 2.5% increase. During
this current spike, broadband transient magnetic activity is measured by the magnetic
pick-up coils in frequencies ranging from a few kHz to about 80 kHz (see figure 4a). Mode
number analysis (4b-c) was performed using the NTI Wavelet Tools† program package
primarily with a method based on looking for the best fitting integer mode number on
the measured cross-phases as function of relative probe positions (Horváth et al. 2015).
The toroidal array of “ballooning coils”, which measures variations to the radial magnetic
field, was used for the toroidal mode number analysis, applying the phase corrections of
the measured transfer functions of the probes (Horváth et al. 2015). The poloidal mode
numbers were determined using the C09 Mirnov coil array, using the probe positions
transformed into the straight-field-line coordinate system of the q = 2 surface. Measured
transfer functions were not available for this set of probes, so the confidence in the results
had to be improved by applying a complementary method of mode number estimation
that is based on the monotonization of the phase functions (Pokol et al. 2008). The
analysis clearly indicated a (m,n) = (1, 1) mode propagating in the electron diamagnetic
drift direction in the frequency range of 8-20 kHz. No precursor activity is observed;
the only signal components preceding the event are some low frequency (∼ 100Hz)
oscillations, which is attributed to vessel and diagnostic vibrations.

3. Numerical modelling of the runaway electron distribution
A key objective of synchrotron radiation analysis is to validate theoretical models for

runaway electron dynamics. Given a runaway electron distribution function from such a
model, we should require that the corresponding synthetic synchrotron radiation image
matches the experimental image well with regard to pattern shape, size and intensity
distribution. Failure to predict the observed synchrotron radiation pattern can provide
insight into which effects are missing from the model. In this section, we will discuss the
coupling of the 1D fluid code Go (Smith et al. 2006; Fehér et al. 2011; Papp et al. 2013)

† https://github.com/fusion-flap/nti-wavelet-tools
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(a) Camera view (b) t = 1.029 s (c) t = 1.030 s

Figure 3. (a) Simulated view of the Phantom v711 fast camera in the configuration used
for discharge 35628. (b/c) Synchrotron radiation images observed using a filtered visible light
camera in ASDEX Upgrade during discharge 35628. A sudden, sub-millisecond transition from
a circular to a crescent shape is observed around t = 1.030 s.
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Figure 4. Time-frequency analysis of the transient MHD event in the runaway plateau stage
of AUG discharge #35628. (a) Representative spectrogram of a magnetic pick-up coil signal
shows wide-band activity with signal energy concentrated to below 20 kHz; (b) Toroidal mode
numbers fitted using the MHI-B31 toroidal ballooning coil array; (c) Poloidal mode numbers
fitted using the MHI-C09 poloidal Minrov coil array. Mode number plots show only the good
fits and only in regions of sufficient signal energy. The mode below 20 kHz has (n,m) = (1,−1)
mode numbers in machine coordinates, which corresponds to (n,m) = (1, 1) propagating in the
electron diamagnetic drift direction in plasma coordinates.

to the 2D kinetic solver Code (Landreman et al. 2014; Stahl et al. 2016), used to solve
for the runaway electron distribution in an ASDEX Upgrade-like disruption.

3.1. Description of numerical model
We describe the evolution of the parallel electric field E‖ in radius and time by the

induction equation in a cylinder, which is solved using Go:

1

r

∂

∂r

(
r
∂E‖

∂r

)
= µ0

∂j

∂t
. (3.1)

Here r denotes the minor radius, j the plasma current density and µ0 is the permeability
of free space. We assume that the plasma is surrounded by a perfectly conducting wall,
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and that the wall and plasma are separated by a vacuum region that is 8 cm wide.
The coupling to the kinetic runaway model enters in the current density, j, which is
decomposed into an Ohmic component jΩ and a runaway component jRE,

j = jΩ + jRE = σE‖ + e

∫
v‖fRE d3p, (3.2)

where σ is the electrical conductivity with a neoclassical correction (Smith et al. 2006),
e is the elementary charge, v‖ is the electron parallel velocity and fRE is the runaway
electron distribution function. The distribution function is in turn calculated in every
time step, at each radius, using the local plasma parameters, by solving the kinetic
equation

∂f

∂t
+ eE‖

∂f

∂p‖
= C {f}+ Sava. (3.3)

The linear collision operator C {f} accounts for collisions between electrons and (partially
screened) ions (Hesslow et al. 2017, 2018), and between electrons using a relativistic test-
particle operator (Pike & Rose 2014), while the source term Sava accounts for secondary
runaway electrons generated through the avalanche mechanism. We use the simplified
avalanche source derived in (Rosenbluth & Putvinski 1997) as the difference to the fully
conservative operator is small (Embréus et al. 2018). Radiation losses were initially also
considered, but were found to be negligible in this scenario.

The use of a test-particle collision operator in equation (3.3), given in Appendix A
of Hesslow et al. (2019), is what makes the combined solution of equations (3.1)-(3.3)
computationally feasible. Neglecting the field particle part of the collision operator,
however, also means that the Ohmic current in Code is underestimated by about a
factor of two (Helander & Sigmar 2005), which we must account for in our coupled
fluid-kinetic calculations with a self-consistent electric field evolution. The linear relation
between jΩ and E‖ simplifies the correction procedure. By scanning over a wide range of
effective charge and temperature, it is found that the conductivity obtained with the test-
particle operator is related through a multiplicative factor g(Zeff) to the fully relativistic
conductivity σ obtained by Braams & Karney (1989):

σCODE,tp = g (Zeff)σ. (3.4)

Hence, in order to calculate the runaway contribution to equation (3.2), we subtract the
corrected Ohmic contribution from the total current density jCODE in Code:

jRE = jCODE − σCODE,tpE‖ = jCODE − g (Zeff)σE‖. (3.5)

With this approach, the runaway current contribution can be calculated without arbi-
trarily defining a runaway region in momentum space, while providing a more accurate
estimate than assuming all runaways to travel at the speed of light parallel to the
magnetic field, which is otherwise usually done in Go and other fluid codes.

To compute the synchrotron radiation observed by the visible camera from the pop-
ulation of electrons calculated using the model above, we use the synthetic diagnostic
tool Soft (Hoppe et al. 2018b). This tool calculates, for example, a synchrotron image
by summing contributions from all parts of real and momentum space and weighting
them with the provided distribution function. To reduce memory consumption, phase
space is parameterised using guiding-centre orbits. Soft can also be used to calculate
so-called radiation Green’s functions G(r, p, θ), as introduced in equation (2.1), which
relate phase-space densities to measured diagnostic signals. This mode of running Soft
is used extensively for the backward modelling in section 4.
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3.2. Plasma parameters used in the numerical simulations

Runaway electrons in ASDEX Upgrade disruptions, such as #35628, are typically gen-
erated through a combination of the hot-tail and avalanche mechanisms (Insulander Björk
et al. 2020). The avalanche exponentiation factor is robust and depends mainly on the
change in the poloidal flux profile. In the ideal theory, where the avalanche growth rate is
directly proportional to the electric field, and radial transport during the CQ is assumed
to be negligible, the final plateau runaway current profile is completely determined by
the surviving post-TQ runaway seed and plasma current profile. In this work we assume
that the loop voltage is constant across flux surfaces just before the disruption, and take
the initial current profile to be the corresponding ohmic current profile, which leaves the
post-TQ seed profile as the main unknown of the simulation. Due to the relatively large
current drop of ∼ 600 kA, we expect a significant number of avalanche multiplications to
occur throughout the plasma, and therefore a relatively weak sensitivity to the chosen
runaway seed density profile.

Simulations with Go+Code show that taking into account all the hot-tail electrons
obtained from kinetic theory would overestimate the final runaway current with ap-
proximately a factor of four. The reason for this is that due to the presence of intense
magnetic fluctuations during the TQ, a large part of the hot-tail runaway seed is likely
to be deconfined, and the corresponding radial losses are not taken into account in the
model. We therefore choose to prescribe a radially uniform seed population such that the
final runaway current is matching the experimentally observed plasma current during the
plateau.

With this picture in mind, we take the following approach to modelling discharge
#35628:

(i) First, we perform a purely fluid modelling of the thermal quench using Go, to
obtain the initial electric field evolution. Then, we start the combined kinetic-fluid
simulation after the thermal quench, thereby effectively disabling the “natural” hot-
tail generation otherwise obtained in the suddenly cooling plasma. Thus, as an initial
condition for the post TQ distribution function, we assume that, at each radius, it
consists of current-carrying thermal electrons, along with a smaller electron population,
representing the hot-tail that is uniform in radius and Gaussian in the momentum p,
centred at p‖ = 3mec, p⊥ = 0, and with standard deviation ∆p = 3mec.
(ii) The evolution of the temperature during the TQ itself is taken from the experiment.

While the uncertainties of this data are large, we have confirmed that, as a result of
prescribing the runaway seed to match the final plasma current, our final results are
not sensitive to the details of the temperature evolution. Furthermore, even though the
temperature evolution affects the self-consistent electric field evolution during the CQ,
the final runaway current is mainly sensitive to the time-integrated electric field, which
is independent of temperature evolution. The post-disruption temperature is therefore
taken to be T = 5 eV throughout the plasma, which is largely consistent with simulated
values during the current quench of ASDEX Upgrade disruptions induced by argon gas
injection (Insulander Björk et al. 2020). Although the temperature is expected to drop
to a significantly lower value during the runaway plateau, it only weakly impacts the
runaway dynamics and consequently we neglect this effect here.
(iii) We assume that neutral argon atoms with density nAr = 0.83× 1020 m−3 (cor-

responding to 20% of the injected atoms (Pautasso et al. 2020; Insulander Björk et al.
2020)) are uniformly distributed in radius at the beginning of the simulation, and neglect
their radial transport throughout the simulation. The densities of the various ionization
states, and the corresponding electron density, are calculated assuming an equilibrium
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Figure 5. Time evolution of the electron energy spectrum (pitch-averaged distribution
function) at the magnetic axis. The runaway electron seed starts close to p = 5mec at t = 0, and
is then quickly accelerated to above p = 100mec within a few milliseconds. During the remainder
of the runaway plateau, the initial seed sits around p = 100mec while new runaway production
is dominated by large-angle collisions, causing the energy spectrum to slowly approach an
exponential. The distribution also contains a thermal Maxwellian component, but due to its
low temperature, it only appears as a vertical line at p = 0mec in this figure.

between ionization and recombination; that is, nik are computed from

Ri+1
k ni+1

k − Iiknik = 0, i = 0, 1, ..., Z − 1,∑
i

nik = ntot
k , i = 0, 1, ..., Z, (3.6)

where ntot
k is the total density of species k. Iik denotes the electron impact ionization rate

and Rik the radiative recombination rate for the ith charge state of species k, respectively.
The ionization and recombination rates are extracted from the Atomic Data and Analysis
Structure (ADAS) database (Summers et al. 2007; Summers & O’Mullane 2011).

3.3. Simulation results
The time evolution of the electron energy spectrum in the Go+Code simulation of

discharge #35628 is shown in figure 5. We only evolve the simulation until around t =
1.029 s, before the synchrotron pattern suddenly changes. The only plausible mechanism
that could cause such a rapid transition of the pattern is a relaxation of the current profile
in fast magnetic reconnection (Igochine et al. 2006; Papp et al. 2011), in relation to an
internal magnetohydrodynamic instability—a physical mechanism beyond the modelling
capabilities of the Go+Code tool.

As shown in figure 5, the seed runaway population is quickly accelerated to a maximum
energy during the current quench, which lasts for approximately 4ms. During this phase,
a population of secondary runaways gradually builds up, overtaking the plasma current.
The maximum energy varies across radii—from p ≈ 100mec in the core to only a few
mec at the edge—as it primarily depends on the magnitude of the induced electric field
during the disruption, which, in turn, depends on the change in the current profile; in this
scenario the maximum energy decreases monotonically with radius from its maximum
value on the magnetic axis. After the current quench, during the remainder of the
simulation, the seed electrons remain around this maximum energy as the electric field
has dropped to the low level required to sustain the runaway current.

Using Soft, we compute the synchrotron radiation observed from the distribution of
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(a) Soft
t = 1.008 s

(b) Soft
t = 1.018 s

(c) Soft
t = 1.029 s

(d) Experiment
t = 1.029 s

Figure 6. Comparison of the synthetic synchrotron image produced with Soft, taking the
distribution function calculated with Go+Code at (a) t = 1.008 s, (b) 1.018 s, and (c) 1.029 s as
input, with the (d) synchrotron image taken in ASDEX-U #35628, also at t = 1.029 s. Although
the synthetic synchrotron pattern is larger than the experimental pattern, the overall shape of
the two patterns is the same, indicating that the overall runaway dynamics are well explained
by Go+Code.

electrons calculated with Go+Code. The resulting synthetic camera image at t = 1.029 s,
just before the pattern transition, is presented in figure 6c (along with two preceding times
in figure 6a-b). Comparing the synthetic image to the experimental image in figure 6d,
we find qualitative agreement, with both synchrotron patterns taking a round shape.
The synthetic pattern is, however, significantly larger than the experimental pattern,
both horizontally and vertically. The size of the synchrotron pattern is directly related
to the radial density of runaway electrons, suggesting that the radial runaway density
profile is more sharply peaked in the experiment than in the Go+Code simulation,
which has a flat runaway density profile. An explanation for this discrepancy could be
that the assumed runaway seed profile differs from that in the experiment, or that the
initial current profile—which would experience flattening during the current spike in the
thermal quench—is different. Deviations in plasma parameters such as the density and
temperature could also have an effect on the avalanche gain during the current quench, as
could the radial transport, which we do not model. All of these are assumed parameters
in our model, due to the lack of low uncertainty experimental data. These parameters
could be adjusted to give a better matching radial distribution of synchrotron radiation.
However, improving agreement this way would be both computationally expensive and
of limited value in better illuminating the underlying physics, so we leave this exercise
for future studies.

Instead, we turn our attention to the source of the observed radiation; a closer analysis
reveals that most of it is emitted by an ensemble of particles that originally constituted
the hot-tail seed. As was shown in figure 5, these electrons were rapidly accelerated during
the current quench and then remained at their peak energy. In figures 7a and b, we show
the synchrotron radiation observed from the particles associated with the r/a = 0.37 and
r/a = 0.53 flux surfaces, respectively. By comparing the origin of the radiation at these
radii with the local momentum space distributions in figures 8a and b respectively, we
find that the region of momentum space that dominates synchrotron emission at each
radius coincides with the location of the local seed population. Hence we conclude that it
is the remnant seed runaways that dominate synchrotron radiation in these simulations.

When integrating over all radii, a wider dominant region appears in momentum space,
as shown in figures 7c and d for an early and a late simulation time, respectively. A
comparison of the emission at the two times reveals that the dominant region moves
towards greater perpendicular momentum as time passes. This is caused by collisional
pitch-angle scattering which increases the average perpendicular momentum in the
distribution. As a result of the increased perpendicular momentum, the runaways emit
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Figure 7. Amount of synchrotron radiation observed from different parts of momentum space.
Panels (a) and (b) show the contributions at t = 1.029ms from two individual radii, indicating
that the emission is dominated by the remnant hot-tail seed. The very sharp features running
along almost constant pitch in (a) and (b) are physical, and are connected to the very bright edges
usually seen in synchrotron images from mono-energetic and mono-pitch distribution functions.
Panels (c) and (d) compare the radially integrated synchrotron radiation at t = 1.008ms and
t = 1.029ms respectively.
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Figure 8. Momentum space distribution functions (multiplied by the momentum-space
Jacobian p2 sin θ) from the Go+Code simulations at two select radii, chosen to correspond
approximately to the particles contributing to figures 7a and 7b. The remnant seed appears as
a bump in the distribution function around (a) p‖ = 80mec and (b) p‖ = 55mec.

more synchrotron radiation, leading to a gradual increase of the total intensity in the
camera images. The change in pitch-angle, however, is sufficiently small to not affect
the synchrotron pattern shape significantly. Figure 9 shows the time evolution of the
total intensity in the simulated (solid black line) and the experimental (dashed red)
images, respectively. Although both intensities increase steadily, they do so at slightly
different rates. This can be explained by a discrepancy in the argon density used for
the simulations. As we show in appendix B, kinetic theory predicts that electrons with
momentum p have an exponential pitch-angle dependence in the disruption plateau phase,
fξ(ξ) ∼ exp(Cξ), with C a time-dependent constant, and ξ = p‖/p. During the runaway
plateau, C is roughly inversely proportional to time until it reaches an equilibrium value
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Figure 9. Total detected synchrotron intensity as predicted by combined Go+Code and
Soft simulations (black, solid), and as recorded in the experiment (red, dashed). Since the
experimental measurements are not absolutely calibrated, the curves have been re-scaled to aid
comparison of the slopes.

of 0.1p. In appendix B we show that the pitch parameter C evolves approximately as

C(t) ≈ (p/mec)
2

8nAr,20(t− t0)ms
, (3.7)

where nAr,20 is the argon density, measured in units of 1020 m−3, and the times in the
denominator are given in milliseconds. The emitted synchrotron power at a frequency
ω can furthermore be approximated by the contribution from the strongest emitting
particle of such a distribution which is proportional to

P = exp

−( ωme

3
√
2eB

)2/3
1

γ?4/3
1[

1
C(t0) + (t− t0)νD

]1/3
 , (3.8)

with γ? =
√

1 + (p?/mec)2, and p? the momentum reached by the hot tail seed. The
free parameters in this expression are γ?, nAr, and the unknown prefactor, and it should
therefore in principle be possible to fit this expression to the curves in figure 9, assuming a
constant background plasma parameters and no radial transport. Unfortunately, however,
such a fit can be rather ill-conditioned when the data is nearly linear, as is the case here.
This is partly due to the relatively short time before the transition in the synchrotron
patterns happens, which does not allow for significant pitch angle relaxation. Therefore,
in practice, it is not possible to extract a reliable estimate of nAr in this case. Nevertheless,
the ability for (3.8) to fit both curves in figure 9 lends credibility to the physical picture
obtained from Go+Code and may be used to estimate the impurity density in other
experiments in the future.

4. Backward modelling
The fluid-kinetic model described in section 3 appears to capture the runaway evolution

during the first part of the runaway plateau phase fairly well, but it does not contain the
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physics necessary to describe the sudden synchrotron pattern transition occurring in the
experiment at t ≈ 1.030 s. In this section, we instead analyse the synchrotron radiation
images directly and extract information from the camera images using a regularised,
direct inversion. Without further constraints a direct inversion of the synchrotron image
would be an ill-posed problem, thus we derive an analytical model for the dominant part
of the runaway electron distribution building on the results of section 3.3, which allows
us to better constrain runaway parameters.

4.1. Inversion procedure

We may capitalise on what we have learned from the fluid-kinetic simulations of
section 3, in order to find constraints to regularise the inversion of the synchrotron
images. We found that the synchrotron radiation pattern seen in the camera images
was dominated by the remnant runaway electron seed population, situated at some
maximum energy and slowly relaxing towards a steady-state pitch distribution. This
evolution suggests an accelerated seed electron distribution function of the form

fseed(r, p, ξ) = fr(r) exp

[
−
(
p− p?
∆p

)2
]
exp(Cξ) ≈ fr(r)δ (p− p?) exp (Cξ) , (4.1)

where fr(r) is an arbitrary function describing the radial runaway density, and p?, ∆p
and C are free fitting parameters. Approximating the Gaussian with a delta function
is motivated by the fact that the synchrotron pattern is usually rather insensitive to
variations in the runaway energy distribution. The same argument is used to fully
decouple the spatial coordinate r from the momentum parameter p? and, since C is
mainly a function of p?, also from C. In this model we thus assume for simplicity that
the momentum and pitch distributions are the same across all flux surfaces.

Our inversion method utilises the capability of Soft to generate weight functions for
a given tokamak/detector setup, as described in section 2. The brightness of pixel i in
a synchrotron image Ii is related to the distribution function f(r, p, ξ) = fr(r)fpξ(p, ξ)
through the weight function G(r, p, ξ) as

Ii =

∫
Gi(r, p, ξ)f(r, p, ξ) p

2 dr dp dξ. (4.2)

By representing the image and the discretised radial runaway density profile as vectors,
the discretised version of the equation system (4.2) can be formulated as

Ii =
∑
k

G̃ik(r)f
k
r (r), (4.3)

where we have introduced the reduced weight function matrix

G̃ik = ∆rk

∫
Gi(rk, p, ξ)fpξ(p, ξ) p

2 dpdξ, (4.4)

with ∆rk = |rk+1 − rk|. Given a momentum-space distribution function fpξ(p, ξ), which
can be characterised with the parameters p? and C in equation (4.1), we thus seek
to minimise the sum of squares of differences between pixels in the synthetic and
experimental images Ii and Iexp

i . Since the problem is still ill-posed, we regularise it
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using the Tikhonov method (Press et al. 2007), resulting in

fr(r) = argmin
fr


∥∥∥∥∥∥
∑
j

αΓijf
j
r

∥∥∥∥∥∥
2

2

+
∑
i

‖Iexp
i − Ii‖22

 =

= argmin
fr


∥∥∥∥∥∥
∑
j

αΓijf
j
r

∥∥∥∥∥∥
2

2

+
∑
i

∥∥∥∥∥∥Iexp
i −

∑
j

G̃ijf
j
r

∥∥∥∥∥∥
2

2

 ,
(4.5)

where the Tikhonov matrix Γij is taken to be the identity matrix and the Tikhonov pa-
rameter α is determined using the L-curve method (Hansen & O’Leary 1993). The ability
to solve this problem using a linear least-squares method allows us to efficiently explore
the space of possible combinations of (p?, C), and hence to use typical minimization
methods to solve the full problem.

4.2. Inverted distribution function
One of the main reasons for applying backward modelling to this ASDEX-U discharge

is to better understand what gives rise to the synchrotron pattern transition between
t = 1.029ms and t = 1.030ms, corresponding to the video frames 3b and c. To see
that the transition is not due to a change of the energy distribution, we can estimate
the energy gained by the runaways in a magnetic reconnection event with the following
argument: if the plasma current changes by an amount ∆I during the event, then it
follows from a circuit equation for the plasma that the energy of the electrons changes
according to

∆W =

∫
ecE dt = −

∫
ecL

2πR0

dI

dt
dt = − ecL

2πR0
∆I, (4.6)

where L is the self-inductance and R0 is the major radius of the torus. Assuming L ∼
µ0R0, with µ0 the vacuum permeability, the induced energy is found to increase by
60 eV for every ampere decrease in the plasma current. In our case, where the second
current spike rises by ∆I ≈ 5 kA, the energy transferred to the electrons should be below
0.5MeV, which is small compared to typical runaway energies at t = 1.029ms (≈ 25MeV
at mid-radius, see figure 8b). Furthermore, since the energy is gained exclusively in the
parallel direction, and the pitch angles are initially small, the pitch angles should also be
negligibly affected; ∆θ ≈ −(∆W‖/W‖)θ.

A more general argument against a change of the momentum-space distribution is that
the synchrotron intensity is more sensitive to changes in the energy and pitch angle than
to changes in the radial density profile. As discussed in section 2, the observed synchrotron
intensity is exponentially sensitive to p and ξ in the short wavelength limit, whereas the
radial density always appears as a multiplicative factor. Since the synchrotron intensity
does not change significantly in the spot shape transition, the change to the momentum-
space distribution should not be significant either. On the other hand, a parameter scan
indicates that a significant change to the momentum-space distribution would be required
for a visible spot shape transition. Hence, we expect the observed synchrotron pattern
transition to be caused by a spatial redistribution of runaways. In what follows, we will
therefore seek the best fit between theory and experiment for both frames 3a and b
simultaneously, assuming p? and C to remain unchanged in the transition.

The sum of pixel differences squared, as a function of the fitting parameters p? and
C, is shown in figure 10. In each point, the best radial density is constrained using
equation (4.5). Optimal agreement is obtained with p? = 57.5mec and C = 45, although
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Figure 10. Sum of pixel differences squared for both of frames 11a and b, given different
combinations of p? and C. For each combination of p? and C, the corresponding optimal radial
density is calculated and used for comparing the images. The global minimum is marked with a
green cross and is located in p? = 57.5 and C = 45. The white regions correspond to unreasonable
combinations of the two parameters.

the region of good agreement in figure 10 is fairly large. However, most of the optimal
combinations of p and C yield approximately the same value for the dominant pitch
angle, θ? ≈ 0.30 rad. This is in agreement with the Go+Code and Soft simulations
presented in section 3.3 which had p? ≈ 55mec, C ≈ 25 (at p = p?) and θ? ≈ 0.36 rad at
t = 1.029ms. Since C is inversely proportional to the (relatively poorly diagnosed) argon
density nAr, these are well within the uncertainties of the inversion and in the plasma
parameters.

The radial density profiles obtained in the inversion for the two video frames are
presented in figure 11a. Note that the radial coordinate denotes the particle position
along the outer midplane, and that r = 0 corresponds to the magnetic axis. Since
particles are counted on the outboard side, and since only particles with p = p? are
considered, the inverted radial profile is exactly zero within the grey region r/a ≈ 0.1,
corresponding to the drift orbit shift for these particles. The blue and red shaded regions
in figure 11a indicate the maximum deviation of density profiles corresponding to the
optima of all combinations (p?, C) with normalised likeness less than 2 in figure 10.
Since the radial density profiles contain an uninteresting scaling factor in order for
the inversion algorithm to match the absolute pixel values in both experimental and
synthetic images, we rescale all density profiles by a scalar multiplicative factor before
evaluating the maximum deviation. The maximum deviations suggest that although the
uncertainty in (p?, C) is relatively large, the radial density profiles are somewhat more
robust. Specifically, the analysis shows that the synchrotron pattern transition must be
due to a spatial redistribution of particles.

The radial density profile inversion reveals that the synchrotron pattern change is
caused by a rapid redistribution of the runaway electron density. As described in section 2,
the shifted density profile causes the particles on the high-field side to collectively emit
relatively more radiation than those on the low-field side, yielding a crescent pattern
after the event. By integrating the radial density profiles in figure 11a over the tokamak
volume, one finds that approximately 14% of particles are predicted to be lost in the
event.

A redistribution of the runaway density profile is also consistent with the occurrence of
magnetic reconnection, which, in addition to causing the observed current spike, would
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Figure 11. (a) Inverted radial density profiles for the video frames at t = 1.029 s (black) and
t = 1.030 s (red) for the best fitting values of (p?, C), and the corresponding inverted synthetic
synchrotron radiation images at (b) t = 1.029 s and (c) 1.030 s. The optimal values of p? and C
extracted from figure 10 and used to generate the images are p? = 57.5mec and C ≈ 45. The
blue and red shaded regions in (a) indicate the maximum variation of the radial profiles among
all solutions with normalised likeness 6 2 (corresponding to all points within the 2 contour of
figure 10). The grey shaded region has the size of the drift orbit shift and contains no particles
since Soft only counts particles in the outer midplane.

redistribute the current profile. We do not have sufficient experimental information to
perform an MHD stability analysis, thus it is uncertain exactly how this reconnection
event is triggered. However, the fact that runaway generation is often more efficient in
the plasma core (Eriksson et al. 2004), it is plausible that a corresponding increase in
the peaking of the current profile and decreasing central safety factor, could destabilize
an internal kink instability, consistent with the strong (1,1) mode activity evident in 4b.

5. Summary
We analyzed visible-light camera images of synchrotron emission from runaway elec-

trons in the ASDEX Upgrade discharge 35628 that was deliberately disrupted by argon
massive gas injection. In the runaway plateau phase of this particular discharge, a
sudden transition of the synchrotron image from circular to crescent shape was observed,
correlated with a spike in the plasma current as well as (m,n) = (1, 1) MHD activity.

We simulated the spatio-temporal evolution of the runaway distribution function with
a coupled kinetic-fluid code taking into account the evolution of the electric field self-
consistently. This distribution function was then used as an input to the Soft synthetic
diagnostic tool to calculate the shape and intensity evolution of the synchrotron images.
We find that a hot-tail seed population of runaway electrons was multiplied by close
collisions, resulting in a distribution with an exponentially decreasing energy spectrum.
The remnant seed was accelerated to high energies and was responsible for most of the
synchrotron emission.

We derived an analytical expression for the time evolution of the total emitted syn-
chrotron power and found qualitative agreement with the observed intensity evolution.
By constraining the distribution function in momentum space we inverted the radial
profiles of the runaway beam and found that the change from circular to crescent shape
was caused by a redistribution of the radial profile of the RE density. In particular the
momentum-space distribution was found to be difficult to extract from the images, and to
better constrain it one could potentially combine several independent diagnostic signals,
such as synchrotron spectra, bremsstrahlung spectra, and camera images that view the
plasma from different angles, or are sensitive to different wavelength ranges.
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A number of directions for future studies could be envisaged based on the results of
this study. Radial transport is expected to significantly affect runaway dynamics, both
in present-day as well as future tokamaks, however this has often been neglected in
runaway models due to its complexity, including in this work. Finite-aspect-ratio effects
have also been neglected in the fluid-kinetic modelling part of this study, but could
play a role in the evolution of the runaway electron distribution function. Finally, the
“two-component” runaway population observed in ASDEX Upgrade discharge #35628,
studied here, consisting of a high-energy remnant seed and a current-carrying avalanche
component, should be investigated in different devices and discharges. If the situation
observed in ASDEX Upgrade is representative for many devices, the two-component
model used here for fitting synchrotron radiation could be used more widely to infer
runaway parameters at many experiments.
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Appendix A. Accounting for guiding-centre drifts
To reduce the size of the phase-space from six to three dimensions, Soft utilises a

guiding-centre transformation which eliminates the orbit time, as well as the toroidal
and gyro-phase angles from the distribution function. However, the dependence on the
particle’s position and momentum components still remains in the radiation emission
function, dP/dΩ; these must be computed within the guiding-centre framework. The
runaway electron drift orbit shift can however be significant, and so the effect is of
importance in many, or even most, practical scenarios. In this section we describe the
incorporation of guiding-centre orbit drifts in Soft.

A.1. Electron momentum vector

Formally, the guiding-centre drift motion appears in the standard theory as an O(ε)
effect, where ε is the usual guiding-centre ordering parameter. An expression for the
Larmor radius vector to first order was given by Hirvijoki et al. (2015), and using
expressions found therein one can also derive the following expression for the momentum
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vector of a particle with mass m and charge q (negative for electrons):

p = P + p⊥sign(q)⊥̂+ εb̂

[
p‖ρ (ρ̂ · κ) +

mµ

q

(
a1 : ∇b̂

)]
+

+ ερ̂

[
qB

ρ2

2

(
⊥̂ · ∇ lnB

)
− ρp‖

2

(
b̂ · ∇ lnB

)
− ρp‖

(
a2 : ∇b̂

)]
+

+ ε⊥̂
[
qB

ρ2

2
(ρ̂ · ∇ lnB)− ρp‖

2

(
a1 : ∇b̂

)]
+O(ε2),

(A 1)

with the guiding-center momentum vector

P = p‖b̂+ ε
b̂

qB?‖
×
(
mµ∇B + p2

‖κ
)
, (A 2)

where p‖ and p⊥ are the particle momenta parallel and perpendicular to the magnetic
field respectively, B is the magnetic field strength, b̂ and ρ̂ are mutually perpendicular
unit vectors in the direction of the magnetic field and (lowest order) Larmor radius vector,
respectively, ⊥̂ = ρ̂× b̂, ρ = p⊥/|q|B is the Larmor radius, µ = p2

⊥/2mB is the magnetic
moment, κ = (b̂ · ∇)b̂ is the inverse curvature vector, B?‖ = B + p‖b̂ · (∇× b̂)/q, and the
dyads a1 and a2 are defined as

a1 = −1

2

(
ρ̂⊥̂+ ⊥̂ρ̂

)
, a2 = −1

4

(
⊥̂⊥̂− ρ̂ρ̂

)
. (A 3)

To lowest order, the momentum vector (A 1) describes circular gyro motion around the
magnetic field line. However, when including O(ε) terms, the gyro motion component
picks up contributions which alter this circular motion. A detailed analysis reveals that
the first-order terms primarily shift the axis-of-rotation of the gyro motion from the
magnetic field b̂ to the guiding-centre direction of motion P /P . Hence, to first order in
guiding-centre theory, synchrotron radiation is emitted in an approximately circular cone,
with opening angle equal to the pitch angle θ = arctan(p⊥/p‖), around the guiding-centre
momentum vector P .

A.2. Implementation and validation
The conclusions from the analysis of the electron momentum vector suggest that the

cone model, implemented previously Soft (Hoppe et al. 2018b), can be modified to take
guiding-centre drifts into account by including the first-order drift terms in the guiding-
centre momentum vector P , and consider the radiation to be emitted in an infinitesimally
thin circular cone around P . The method is however not exact since the O(ε) terms
in (A 1) can break gyrotropy, making the emission cone non-circular. Therefore, when
we implement the modified cone model in Soft, we also implement a hybrid full-
orbit/guiding-centre model that can indicate when the cone model assumptions are
violated.

Soft computes the radiation observed from an ensemble of particles with distribution
function fgc(r,p) by evaluating the integral

P =

∫
Θ

(
rcp

rcp

)
n̂ · rcp

r3
cp

dP (x,p, rcp)

dΩ
fgc(r, p, µ) J drdτdφ dp(0) dA. (A 4)

Here, rcp = x0 − x is the vector extending from the detector at x0 to the particle at
x = x(r, τ, φ), p(0) is the particle momentum at the outer mid-plane, n̂ is the detector
surface normal, Θ is a step function that is one whenever rcp/rcp lies in the detector
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field-of-view, dP/dΩ is the angular distribution of radiation emitted by each particle,
and J is the Jacobian for the full coordinate transformation (including the guiding-
centre transformation). The spatial coordinates used are the minor radius of the flux
surface in the outer midplane, r; the time coordinate along a guiding-centre orbit τ ; and
the toroidal angle φ. The momentum p is therefore a function of both x and p(0).

Note that although we use a guiding-centre transformation, the integrand (A 4) is
still dependent on the particle position and momentum x and p. This means that we
have to use equation (A 1) and the corresponding expression for the Larmor radius
vector ρ to consistently evaluate (A 4) to O(ε). However, since it would be prohibitively
computationally expensive to introduce the drifts exactly in the cone model, we use
the observation that the primary effect of the O(ε) terms is to rotate the circular cone
of radiation around the guiding-centre velocity vector, thus we simply modify the cone
model according to

dP

dΩ
∼ δ

(
rcp · b̂− rcp cos θ

)
−→ dP

dΩ
∼ δ (rcp · P − rcpP cos θ) , (A 5)

where b̂ denotes the local magnetic field unit vector and cos θ = p · b̂.
To verify that the approximation (A 5) gives sufficiently accurate result, we now also

evaluate (A 4) using a hybrid approach. Instead of calculating a set of guiding-centre
orbits which are used to evaluate (A 4) together with equation (A 1), we calculate a
set of particle orbits, from which rcp and p are obtained exactly. While this approach
may at first seem to be more accurate, we point out that equation (A 4), which is still
used in this approach, was derived by making a guiding-centre transformation. Thus,
the use of particle orbits to evaluate (A 4) is not expected to be quantitatively accurate
and, in addition, the Jacobian J causes the amount of detected radiation to be weighed
incorrectly. The purpose of the validation is therefore to ensure that the size, shape and
position of the radiation pattern is correct, and this only requires that the guiding-centre
drifts and gyro-orbit can be evaluated correctly. If the assumptions of the modified cone
model (A 5) are violated, we expect the synchrotron pattern shapes calculated by the
two models to deviate significantly.

Figure 12 compares the regular cone model, the modified cone model and the particle
orbit model at two different momenta and a fixed pitch angle θ = 0.2 rad. The figures
show the outline contours of a number of synchrotron images, in order to emphasize the
size, shape and position of the radiation pattern. The effect of the drifts is primarily
to compress the synchrotron pattern, as seen by comparing the dashed (no drifts) and
solid (drifts included) curves. The modified cone model agrees mostly with the particle
orbit model. As the energy is increased, the pattern resulting from the modified cone
model also begins to deviate from the particle orbit model, mainly along the upper edge.
This deviation is a sign of that the guiding-centre is breaking down, and gyrotropy is
being violated. As an additional consequence of the theory breaking down, we observe
unphysical oscillations along the lower right edge in figure 12b. From figure 12 we
can however conclude that the modified cone model captures the dominant effects of
first order guiding-centre corrections, allowing us to more accurately model high-energy
runaway scenarios without a significant increase in numerical complexity.

Appendix B. Estimation of p? and θ? evolution from kinetic theory
By constraining the time evolution of the runaway pitch-angle distribution using kinetic

theory, the evolution of the super-particle parameters, p? and θ?, can be inferred from
the time variation of the experimentally measured total intensity—as done in figure 9.
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Figure 12. Outline of the synchrotron pattern calculated using the particle orbit method
(red), the modified cone model (black, solid), and the cone model neglecting guiding-centre drifts
(black, dashed), at fixed pitch angle (θ = 0.2 rad) and two different momenta. In a synchrotron
radiation image, every pixel enclosed by the contour would be illuminated by radiation. The
main effect of the drifts is to compress the synchrotron pattern towards the low-field side,
corresponding to the drift orbit shift direction.

To obtain a simplified description of the synchrotron radiation emitted by runaways
during the runaway plateau phase, we start with the expression for the emission from an
electron moving in a uniform magnetic field: (Bekefi 1966)

∂P

∂ω
=
mecr0√

3π

ω

γ2

∫ ∞
ω/ωc

K5/3(x) dx,

ωc =
3

2

eB

me

γ2

γ‖
=

3

2

eB

me
γ
√
1 + (1− ξ2)(p/mec)2

γ‖ =
1√

1− ξ2(v/c)2
=

γ√
1 + (1− ξ2)(p/mec)2

ω = 2πc/λ. (B 1)

When p⊥ � mec, the critical frequency—where the emission is the strongest—is approxi-
mately given by ωc ≈ 3eBγ2θ/(2me). Considering an observed wavelength of λ ≈ 700 nm,
a representative pitch angle θ ≈ 0.2, and energy γ ≈ 50, we find that ω/ωc ≈ 8. Then,
the emission is well described by the formula evaluated at the ω/ωc � 1 limit

∂P

∂ω
≈ mecr0√

3π

√
ωcω

γ2
e−ω/ωc . (B 2)

The total emission from a distribution of runaways, which we assume can be approxi-
mated as fRE ≈ F (t, p) exp(−C(t, p)θ2/2), is given by the phase-space integral of

P = exp

(
−2ωme

3eB

1

γ2θ
− C

2
θ2

)
, (B 3)

up to a factor depending on plasma and runaway parameters at most polynomially (in
contrast to the dominant, exponential dependence captured by P). At a given p? (the
precise value of which depends on the energy distribution of runaways), this function is
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maximized by the pitch angle θ?, and takes the maximum value P(θ?), given by

θ? =

(
2ωme

3eBCγ?2

)1/3

,

P(θ?) = exp

[
−
(

ωme

3
√
2eB

)2/3
C1/3

γ?4/3

]
. (B 4)

B.1. Determination of C from kinetic dynamics
At the end of the current quench, when the plasma current is turning into its plateau

phase, the electric field approaches a critical value where the runaway population is
marginally sustained (Breizman 2014). In that case, the momentum flux in phase space
becomes negligible, and the subsequent evolution throughout the plateau phase is mainly
pitch angle relaxation, described by the equation

∂f

∂t
=

∂

∂ξ
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p
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νD(p)

2

∂f
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)]
, (B 5)

which is similar to the equation studied by Aleynikov & Breizman (2015) to determine
the equilibrium distribution. Taking integral moments in ξ of this equation yields
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≈ −2E

p
〈1− ξ〉+ νD, (B 6)

where the last relation is valid for small pitch angles 1 − ξ � 1. Since the initial pitch
angle distribution is highly anisotropic—having been generated by an acceleration in a
strong electric field—the first term will initially be negligible, νD � 2E〈1− ξ〉/p. For a
distribution of the form f ∝ exp(−Cθ2/2), one finds 〈1 − ξ〉 = 1/C, which then yields
the time evolution

C(t) =
1

1
C(t0) + (t− t0)νD

≈ p?2

8nAr,20(t− t0)ms
, (B 7)

In a cold post-disruption plasma where the pitch-angle scattering of electrons is dom-
inated by collisions with argon impurities, the diffusion rate in pitch-angle is given
by Hesslow et al. (2018):

νD ≈ 4πnArcr
2
0

γ

p3
ln 90p

≈ 8nAr,20

p?2
× (1ms−1), (B 8)

where the argon density is expressed in units of 1020m−3 in the last expression.
Combining this result with equation (B 4), we finally obtain the following expression

for the time evolution of the total emitted synchrotron power:

P = exp

−( ωme

3
√
2eB

)2/3
1

γ?4/3
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1
C(t0) + (t− t0)νD

]1/3
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