2,044 research outputs found

    Ergodicity of pumping tests

    Get PDF
    Standard interpretations of pumping tests in heterogeneous formations rely on effective representations of porous media, which replace spatially varying hydraulic properties with their constant counterparts averaged over the support volume of a test. Rigorous approaches for deriving representative (effective, apparent, upscaled, etc.) parameters employ either ensemble or spatial averaging. We derive a set of conditions under which these two paradigms yield identical results. We refer to them as conditions for the ergodicity of pumping tests. This allows one to use stochastic approaches to estimate the statistics of the spatial variability of hydraulic parameters on scales smaller than the support volume of a pumping test

    Travel time moments for sorbing solutes in heterogeneous domains under nonuniform flow conditions

    Get PDF
     A methodology for evaluating the unconditional and conditional moments of travel time for a sorbing solute is presented. The approach is applicable for any flow configuration and for a wide range of mass transfer rate‐limited linear processes. The methodology is applicable to the general case of spatially variable hydrological and chemical parameters. The sorption model used to derive the temporal moments is that of a continuous distribution of mass rate coefficients [Haggerty and Gorelick, 1998]. Models such as instantaneous equilibrium, first‐order and two‐site sorption kinetics, among others, can be considered as particular cases of this general model. Using a deterministic approach, the low‐order moments of the breakthrough curves for reactive solutes can be obtained as a function of those for conservative tracers. Using a stochastic approach, the unconditional low‐order statistics of the travel time moments can be obtained. These moments depend on the statistics of two Lagrangian functions, the travel time for a conservative solute, and an integral of the variations of the chemical parameters weighted by the inverse local velocity along the trajectory. Finally, conditional temporal moments are derived. Moments can be conditioned to any type of information, hard or soft, hydraulic or geochemical. Conditioning is found to reduce uncertainty, characterized by a reduction in the variance of the travel time. The general results are particularized for both uniform in the mean and convergent flow conditions and for simple sorption models such as linear instantaneous equilibrium and first‐order kinetics. In all such cases, close‐form results, based on small perturbations expansions, are presented for the travel time moments

    On the striking similarity between the moments of breakthrough curves for a heterogeneous medium and a homogeneous medium with a matrix diffusion term

    Get PDF
    A usual method to obtain aquifer parameters is to analyze the moments of the breakthrough curves (BTCs) in tracer tests. The parameters to be estimated in this analysis would depend on the conceptual model adopted. Intuitively, if different processes were considered, the shape of the BTCs should be quite different, and one would tend to think that the time and space evolution of the temporal moments should also be quite different. Contrarily, in this paper, we show that two very different conceptual models of solute transport lead to virtually identical moments of the BTC. The two models selected for this study are the classical advection–dispersion equation with a Fickian macrodispersive term and a homogeneous medium advection model with mass-transfer between mobile and immobile matrix phases, for three different models of matrix shape. In both models, the first three moments are linear with travel distance, while the fourth moment is a second order polynomial. This agreement allows us to choose parameters yielding the same moments in the two models. As we consider two fitting parameters, we select them to match the second and third moment. Match in the first moment is obtained from physical arguments. It turns out that the resulting leading term of the fourth moment is identical for both models. As a direct consequence of this work, it follows that for large travel distances it would not be possible to discriminate between conceptual models using data from a single BTC

    An analytical approach to transient homovalent cation exchange problems

    Get PDF
    Cation exchange in groundwater is one of the dominant surface reactions that occurs in nature and it carries with it many important environmental implications. The mass transfer of cation exchanging pollutants in groundwater can be described by a series of coupled partial differential equations, involving both aqueous and adsorbed species. The resulting system is mathematically challenging due to the complex nonlinearities that arise, which in turn complicates analytical approaches. While some analytical solutions for simplified problems exist, these typically lack the mechanisms that allow the waters to change their global chemical signature (in terms of total cations present in aqueous form) over time. We propose a methodology to solve the problem of exchanging two homovalent cations by deriving the driving equation for one of the aqueous species. This equation incorporates explicitly a retardation factor and a decay term, both with parameters that can vary in space and time. While the full solution can only be obtained numerically, we provide a solution in terms of a perturbative approach, where the leading terms can be obtained explicitly. The resulting solution provides physical explanations for the possible existence of non-monotonic concentrations for a range of parameters governing cation exchange processe

    Travel time and trajectory moments of conservative solutes in three dimensional heterogeneous porous media under mean uniform flow

    Get PDF
    We present expressions satisfied by the first statistical moments (mean and variance–covariance) of travel time and trajectory of conservative solute particles advected in a three-dimensional heterogeneous aquifer under uniform in the mean flow conditions. Closure of the model is obtained by means of a consistent second-order expansion in σY (standard deviation of the log hydraulic conductivity) of (statistical) moments of quantities of interest. As such, the results obtained are nominally limited to mildly non-uniform fields, with σY < 1. Resulting mean and variance of particles travel time and trajectory are functions of first and second moments and cross-moments of trajectory and velocity components. Our solution is applicable to infinite domains and is free of distributional assumptions. As an important application of the methodology we obtain closed-form expressions for the unconditional mean and variance of travel time and particle trajectory for isotropic log-conductivity domain characterized by an exponential variogram. This allows us to recover the non linear behavior of mean travel time versus distance, in agreement with numerical results published in the literature, as well as a non-linear effect in the mean trajectory. The analysis of trajectory variance allows recovering some known results regarding transverse macro-dispersion, evidencing some limitations typical of perturbation theory

    Effective dispersion in a chemically heterogeneous medium under temporally fluctuating flow conditions

    Get PDF
    We investigate effective solute transport in a chemically heterogeneous medium subject to temporal fluctuations of the flow conditions. Focusing on spatial variations in the equilibrium adsorption properties, the corresponding fluctuating retardation factor is modeled as a stationary random space function. The temporal variability of the flow is represented by a stationary temporal random process. Solute spreading is quantified by effective dispersion coefficients, which are derived from the ensemble average of the second centered moments of the normalized solute distribution in a single disorder realization. Using first-order expansions in the variances of the respective random fields, we derive explicit compact expressions for the time behavior of the disorder induced contributions to the effective dispersion coefficients. Focusing on the contributions due to chemical heterogeneity and temporal fluctuations, we find enhanced transverse spreading characterized by a transverse effective dispersion coefficient that, in contrast to transport in steady flow fields, evolves to a disorder-induced macroscopic value (i.e., independent of local dispersion). At the same time, the asymptotic longitudinal dispersion coefficient can decrease. Under certain conditions the contribution to the longitudinal effective dispersion coefficient shows superdiffusive behavior, similar to that observed for transport in s stratified porous medium, before it decreases to its asymptotic value. The presented compact and easy to use expressions for the longitudinal and transverse effective dispersion coefficients can be used for the quantification of effective spreading and mixing in the context of the groundwater remediation based on hydraulic manipulation and for the effective modeling of reactive transport in heterogeneous media in general

    Characterization of mixing and spreading in a bounded stratified medium

    Get PDF
    Matheron and de Marsily [Matheron M, de Marsily G. Is the transport in porous media always diffusive? A counter-example. Water Resour Res 1980;16:901–17] studied transport in a perfectly stratified infinite medium as an idealized aquifer model. They observed superdiffusive solute spreading quantified by anomalous increase of the apparent longitudinal dispersion coefficient with the square root of time. Here, we investigate solute transport in a vertically bounded stratified random medium. Unlike for the infinite medium at asymptotically long times, disorder-induced mixing and spreading is uniquely quantified by a constant Taylor dispersion coefficient. Using a stochastic modeling approach we study the effective mixing and spreading dynamics at pre-asymptotic times in terms of effective average transport coefficients. The latter are defined on the basis of local moments, i.e., moments of the transport Green function. We investigate the impact of the position of the initial plume and the initial plume size on the (highly anomalous) pre-asymptotic effective spreading and mixing dynamics for single realizations and in average. Effectively, the system “remembers” its initial state, the effective transport coefficients show so-called memory effects, which disappear after the solute has sampled the full vertical extent of the medium. We study the impact of the intrinsic non-ergodicity of the confined medium on the validity of the stochastic modeling approach and study in this context the transition from the finite to the infinite mediu

    Debates—Stochastic subsurface hydrology from theory to practice: why stochastic modeling has not yet permeated into practitioners?

    Get PDF
    We address modern topics of stochastic hydrogeology from their potential relevance to real modeling efforts at the field scale. While the topics of stochastic hydrogeology and numerical modeling have become routine in hydrogeological studies, nondeterministic models have not yet permeated into practitioners. We point out a number of limitations of stochastic modeling when applied to real applications and comment on the reasons why stochastic models fail to become an attractive alternative for practitioners. We specifically separate issues corresponding to flow, conservative transport, and reactive transport. The different topics addressed are emphasis on process modeling, need for upscaling parameters and governing equations, relevance of properly accounting for detailed geological architecture in hydrogeological modeling, and specific challenges of reactive transport. We end up by concluding that the main responsible for nondeterministic models having not yet permeated in industry can be fully attributed to researchers in stochastic hydrogeology

    Fate of sulfamethoxazole in groundwater: Conceptualizing and modeling metabolite formation under different redox conditions

    Get PDF
    Degradation of emerging organic compounds in saturated porous media is usually postulated as following simple low-order models. This is a strongly oversimplified, and in some cases plainly incorrect model, that does not consider the fate of the different metabolites. Furthermore, it does not account for the reversibility in the reaction observed in a few emerging organic compounds, where the parent is recovered from the metabolite. One such compound is the antibiotic sulfamethoxazole (SMX). In this paper, we first compile existing experimental data to formulate a complete model for the degradation of SMX in aquifers subject to varying redox conditions, ranging from aerobic to iron reducing. SMX degrades reversibly or irreversibly to a number of metabolites that are specific of the redox state. Reactions are in all cases biologically mediated. We then propose a mathematical model that reproduces the full fate of dissolved SMX subject to anaerobic conditions and that can be used as a first step in emerging compound degradation modeling efforts. The model presented is tested against the results of the batch experiments of Barbieri et al. (2012) and Nödler et al. (2012) displaying a non-monotonic concentration of SMX as a function of time under denitrification conditions, as well as those of Mohatt et al. (2011), under iron reducing conditions

    Optimal reconstruction of concentrations, gradients and reaction rates from particle distributions

    Get PDF
    Random walk particle tracking methodologies to simulate solute transport of conservative species constitute an attractive alternative for their computational efficiency and absence of numerical dispersion. Yet, problems stemming from the reconstruction of concentrations from particle distributions have typically prevented its use in reactive transport problems. The numerical problem mainly arises from the need to first reconstruct the concentrations of species/components from a discrete number of particles, which is an error prone process, and then computing a spatial functional of the concentrations and/or its derivatives (either spatial or temporal). Errors are then propagated, so that common strategies to reconstruct this functional require an unfeasible amount of particles when dealing with nonlinear reactive transport problems. In this context, this article presents a methodology to directly reconstruct this functional based on kernel density estimators. The methodology mitigates the error propagation in the evaluation of the functional by avoiding the prior estimation of the actual concentrations of species. The multivariate kernel associated with the corresponding functional depends on the size of the support volume, which defines the area over which a given particle can influence the functional. The shape of the kernel functions and the size of the support volume determines the degree of smoothing, which is optimized to obtain the best unbiased predictor of the functional using an iterative plug-in support volume selector. We applied the methodology to directly reconstruct the reaction rates of a precipitation/dissolution problem involving the mixing of two different waters carrying two aqueous species in chemical equilibrium and moving through a randomly heterogeneous porous mediu
    corecore