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Abstract

A usual method to obtain aquifer parameters is to analyze the moments of the breakthrough curves (BTCs) in tracer tests. The

parameters to be estimated in this analysis would depend on the conceptual model adopted. Intuitively, if different processes

were considered, the shape of the BTCs should be quite different, and one would tend to think that the time and space evolution

of the temporal moments should also be quite different. Contrarily, in this paper, we show that two very different conceptual

models of solute transport lead to virtually identical moments of the BTC. The two models selected for this study are the

classical advection–dispersion equation with a Fickian macrodispersive term and a homogeneous medium advection model

with mass-transfer between mobile and immobile matrix phases, for three different models of matrix shape. In both models, the

first three moments are linear with travel distance, while the fourth moment is a second order polynomial. This agreement

allows us to choose parameters yielding the same moments in the two models. As we consider two fitting parameters, we select

them to match the second and third moment. Match in the first moment is obtained from physical arguments. It turns out that the

resulting leading term of the fourth moment is identical for both models. As a direct consequence of this work, it follows that for

large travel distances it would not be possible to discriminate between conceptual models using data from a single BTC.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Solute transport in heterogeneous media has been

the subject of a large amount of research in recent

years, both theoretically and in real site applications.

Theoretical analysis is generally carried out in

a geostatistical frame, where the variables that appear

in the transport equation are treated as Spatial

Random Functions (Matheron, 1971). This has led

to much work oriented to study the behavior of

hydraulic heads and/or concentrations and to find the

values of effective and equivalent parameters for

groundwater flow and solute transport. The working

methodologies and the main results are summarized in

the books by Dagan (1989), Gelhar (1993) and Zhang

(2002) or Rubin (2003).
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One of the most prominent effects of heterogeneity

is dispersion. Spatial variability of water velocity

causes the solutes to disperse. In fact, one of the most

significant findings of stochastic hydrogeology has

been the derivation of the equation controlling

transport at long distances from the equation control-

ling transport at the local scale and the assumption of

heterogeneous velocity. The usual representation is

the advection–dispersion equation (ADE) with a

Fickian macrodispersion term

w
›kCl
›t

þ kql7kCl2 7ðAkql7kClÞ ¼ 0; ð1Þ

where kCl is the expected value of the concentration

of any given solute, w is total porosity, kql is the

expectation of Darcy’s velocity, and A is the

macrodispersivity tensor. This last tensor accounts

for molecular diffusion plus the effects of random

departures of the local velocities from their mean

value. A lot of work has been devoted in the stochastic

hydrogeology literature to find the close form

expression for this tensor. The pioneering work in

this subject was that of Gelhar and Axness (1983),

who derived the expression for the different com-

ponents in A; aij; under a number of simple geologic

structures and flow conditions.

This Fickian representation of dispersion is not

valid at intermediate distances. In fact, a vast amount

of research has been devoted to explaining and

representing the well-known scale-dependence of

dispersivity. Dagan (1984), under the hypothesis of

kCl Gaussian, derives a solution where the aij terms

become functions of travel time ðtÞ from the source. In

particular, the longitudinal dispersivity, a11; is found

to grow linearly for small and reaches an asymptote

for large travel distances (Dagan, 1984). Similar

results are obtained by Neuman et al. (1987) using a

different approach. Dagan (1987, 1988); Neuman and

Zhang (1990) derive the time dependent macrodis-

persivity tensor from particle displacement moments.

Jaekel and Vereecken (1997) applied the renormaliza-

tion group method to obtain also a scale dependent

tensor, still local in space. Their findings were later

validated numerically by Schwarze et al. (2001).

Due to the time dependence, different attempts have

been made to find asymptotic values for macrodispersion

in fields consisting of more than one scale (Zhan and

Wheatcraft, 1996; McLaughlin and Ruan, 2001; Lunati

et al., 2002). Dagan and Neuman (1991) and a number of

authors, thereafter (Cushman and Ginn, 1993; Kavvas

and Karakas, 1996; Dentz et al., 2000) derive a different

aspect for the equation, where the dispersive term is non-

local in either space or time (and thus the macrodispersive

term is non-Fickian). Several results are also available for

transport in non-uniform flow incorporating conditional

moments (Neuman, 1993; Butera and Tanda, 1999;

Guadagnini and Neuman, 2001).

Unfortunately, the above non-local approaches are

difficult to apply in real problems. Therefore, dis-

persion is still represented by means of a Fickian

(macrodispersive) term in most cases. Problems

caused by this choice are reviewed by Carrera

(1993). Among them, we wish to stress here the

inaccurate reproduction of both plumes and break-

through curves (BTCs) (see also Kennedy and Lennox,

2001). Contrary to what Fickian dispersion predicts,

actual plumes often display a highly asymmetric shape,

with the maximum displaced towards the front. By the

same token, Fickian models fitted to early time data

rarely reproduce the long tails exhibited by late time

breakthrough data. As an example, in Fig. 1, we show

the calibration of a convergent flow tracer tests

performed at El Cabril site in southern Spain

(UPC-UPM, 1991) obtained by fitting early time data

with the standard ADE. From the figure, late time data

is poorly predicted and the total mass calibrated is

lower than the actual input mass.

The two features commented (asymmetric spatial

distributions and long tails) can be simulated by

means of a term representing the exchange of solute

between mobile and immobile regions. This type of

formulation is often used to represent matrix diffusion

in fractured media (Neretnieks, 1980; Barker and

Foster, 1981); sorption (coupled or uncoupled to

diffusion) into slowly moving portions of soils

(Sposito et al., 1986; Shapiro, 2001; Wörman et al.,

2003); non-instantaneous (kinetic) reversible mass

transfer (Cunningham et al., 1997; Haggerty and

Gorelick, 1998; McKenna et al., 2001); the effect of

connectivity of highly conductive features (Zinn and

Harvey, 2003); low permeability inclusions

(Guswa and Freyberg, 2000); and other phenomena

(Zimmerman et al., 2002; Carrera et al., 1998).

We will call this term ‘matrix diffusion’ for shortness,

because it can be viewed as representing

a diffusive exchange between a flowing portion
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and a non-flowing, or matrix, portion. Solute diffusing

into the non-flowing portion is delayed, thus leading

to asymmetric plumes, reduction in peak concen-

trations and long-tailed BTCs. In Fig. 2, we see the

same BTC than in Fig. 1 now interpreted allowing

linear exchange with an immobile water phase

(UPC-UPM, 1991). In this case, the peak is again

well characterized, but now tailing is well reproduced.

The results shown in Figs. 1 and 2 suggest that a

matrix diffusion term could be used for representing

dispersion more accurately than a Fickian term, thus

providing a better reproduction of transport through

heterogeneous media. In fact, Carrera et al. (1998)

showed that the matrix diffusion term can be

substituted by means of a convolution product

resembling analogous terms used by Dagan and

Neuman (1991) or by Berkowitz and Scher (1995).

Also, Guswa and Freyberg (2002) show that a mass

transfer term performed much better than a dispersive

term in a bimodal aquifer where low permeability

inclusions are found in a high conductive matrix.

The original motivation of our work was to seek a

matrix diffusion representation of dispersion that is

consistent with stochastic formulations of transport in

heterogeneous media. That is, we expected that by

fitting macrodispersion with a matrix diffusion term,

we could reproduce the time evolution of the

dispersion coefficient that has been derived by

stochastic methods. As it turns out, such a represen-

tation is not possible. We will see that the evolution of

the BTC moments is not adequate. Still, this

representation can be viewed as a convenient

alternative to Fickian macrodispersion, that is, valid

after ergodic conditions have been attained. One of

the critical points is that the parameters included in the

mass transfer term should have a physical meaning,

and, therefore, should be related to actual parameters

characterizing the heterogeneity of the medium.

The approach to reach such objective is as follows.

First, we derive the moments of the expected BTC

corresponding to a heterogeneous medium assuming

that the ADE with a Fickian macrodispersive term

holds. Second, we find the travel time moments for a

homogeneous medium in which a matrix diffusion

term was considered. The last point is to show how a

proper identification of parameters leads to identical

temporal moments up to fourth order in the case of

large travel distances. Finally, we discuss the physical

Fig. 1. Calibration of a convergent flow tracer test performed at El Cabril (Spain). Interpretation with the standard ADE after fitting early time

data (adapted from UPC-UPM, 1991). Best fit is obtained with a reduced input mass.
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meaning of the identified parameters as well as some

implications and extensions of our work.

2. Temporal moments for the ADE with a Fickian

macrodispersive term

Under mean uniform flow in the x-direction

(without any loss of generality), and considering

that for steady-state flow and long travel distances the

transverse macrodispersivity is negligible with

respect to the longitudinal one (Dagan, 1988), we

can rewrite Eq. (1) as

w
›kCl
›t

þ kql
›kCl
›x

2 a11kql
›2kCl
›x2

¼ 0; ð2Þ

where a11 is (longitudinal) dispersivity and can be

written in terms of the parameters that characterize the

hydraulic conductivity Spatial Random Function. As

an example, for isotropic media a11 ¼ s2
Y I (Dagan,

1989), where s2
Y is the variance of log-conductivity

and I is the integral distance in the x-direction.

We disregard local dispersion, because it is usually

very small compared to the macrodispersive term. It

must be pointed that the two simplifications (namely,

neglecting transverse dispersion and local dispersion)

have been adopted without loss of generality. That is,

they do not affect later results, as we will be interested

in travel time towards a plane located perpendicular to

the mean flow direction (Cvetkovic et al., 1992),

which can be reduced to a single point along the flow

direction under these two simplifications. Actually,

Berglund and Fiori (1997) showed that pore-scale

(local) dispersion affects transport primarily through

transverse mixing.

We consider the case of an instantaneous point

injection in an initially clean aquifer, which can be

taken as a kernel for any other kind of injection in

space and time. The goal is to get an expression for the

temporal moments of the BTC at a point located at

distance x: To this end, it is convenient to set the

problem in the Laplace space

ws �C þ kql
› �C

›x
2 a11kql

›2 �C

›x2
¼ 0; ð3Þ

where s is the Laplace variable and �C is the Laplace

transform of kCl: The analytical solution for this

Fig. 2. Calibration of a convergent flow tracer test performed at El Cabril (Spain). Interpretation after allowing linear exchange with an

immobile water phase (adapted from UPC-UPM, 1991).
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problem becomes:

�Cðx; sÞ ¼ exp
x

2a11

1 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

4wa11

kql
s

s !( )
: ð4Þ

Inversion of Eq. (4), would yield the expected

BTC. However, we are only interested in its moments,

which are easier to find from the solution of C in

Laplace space. The non-centered temporal moments,

defined as

TiðxÞ ¼
ð1

0
tikCðx; tÞl dt

�ð1

0
kCðx; tÞl dt;

can be obtained by taking the limits of sequential

derivatives of Eq. (4) with respect to s (Aris, 1958):

TiðxÞ ¼ lim
s!0

ð21Þi

�Cðx; sÞ

di �Cðx; sÞ

dsi
: ð5Þ

The central moments can be obtained from the

non-centered ones as

s2
tðxÞ ¼ T2ðxÞ2T2

1 ðxÞ;

StðxÞ ¼ T3ðxÞ2 3T2ðxÞT1ðxÞþ 2T3
1 ðxÞ;

M4;tðxÞ ¼ T4ðxÞ2 4T3ðxÞT1ðxÞþ 6T2ðxÞT
2
1 ðxÞ2 3T4

1 ðxÞ;

ð6Þ

were s2
t ; St; and M4;t are the second (variance), third

and fourth order central moments of the expected

BTC, respectively.

A relative simple way to obtain the different TiðxÞ

terms is to perform a McLaurin expansion of the

function inside the exponential in Eq. (4), that is

�Cðx; sÞ ¼ exp 2
x

kUl
s 2

a11

kUl
s2 þ 2

a2
11

kUl2
s3

 (

25
a3

11

kUl3
s4 þ Oðs5Þ

!)
; ð7Þ

with kUl ¼ kql=w meaning the expected value of the

advective velocity. Sequential differentiation of Eq.

(7) and substitution in Eqs. (5) and (6) leads to the

temporal moments:

T1ðxÞ ¼
x

kUl
; ð8aÞ

s2
tðxÞ ¼ 2

a11

kUl2
x; ð8bÞ

StðxÞ ¼ 12
a2

11

kUl3
x; ð8cÞ

M4;tðxÞ ¼ 12
a2

11

kUl4
x2 þ 120

a3
11

kUl4
x: ð8dÞ

As a result, the first three moments are linear with

travel distance, while the fourth order moment is a

second order polynomial. Notice that for large distances

the leading term in the fourth order moment (8d) is the

one in x2; but in general there will also be a contribution

in x: We will come back to this point later.

3. Homogeneous media with a matrix

diffusion term

Matrix diffusion is a transport mechanism by

which solutes transfer from the water flowing portions

of permeable media to the non-flowing portions

(matrix) and vice versa. In any geological formation,

the volume of voids (totally filled with water in the

case of saturated flow) can be separated for modeling

purposes into two zones. The first one includes the

voids that can be reached by flowing water (mobile

zone), while the second represents those that cannot

(immobile zone). The solute can only enter this

second zone by molecular diffusion. The term matrix

diffusion refers to this exchange between mobile and

immobile zones (Neretnieks, 1980). While most of the

work in matrix diffusion is concentrated on low

permeability fractured media (Rasmuson and

Neretnieks, 1981; Rasmuson, 1984; Shapiro, 2001;

Wörman et al., 2003), this process can also be

encountered in granular materials (Wood et al.,

1990; Cunningham et al., 1997) or clays (Carrera

et al., 1990).

The effects of matrix diffusion are diverse. On one

hand, a large volume of voids becomes accessible to

the solute by diffusion. This causes an apparent

retardation with respect to solutes that do not enter the

matrix (Maloszewski and Zuber, 1985; Goltz and

Roberts, 1987). An interesting example is that of

Zuber et al. (2001), who presented a case in Poland

where matrix diffusion causes a huge retardation

(on the order of 50) that is assumed to be the cause of

detected pollution still not affecting a phreatic aquifer.

On the other hand, diffused solutes may take a long
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time to come out of the matrix. This causes tailing

in BTCs.

The objective of this section is to find the moments

of BTC when we incorporate a term that accounts for

diffusion into the matrix instead of the Fickian

dispersion term of Eq. (2). Therefore, the processes

considered are advection along x in the mobile zone,

and mass transfer by diffusion between the mobile and

the immobile zones. No retardation is considered in

either zone, although it would be straight forwards to

consider it in our derivation. Local dispersion is also

neglected in order to make it comparable to the ADE

case, but again it would be straightforward to

incorporate it. The transport equation finally becomes

(Carrera et al., 1998)

wf

›Cf

›t
þ smxw

0
mDm

›Cm

›h

				
h¼hmax

þq0 ›Cf

›x
¼ 0; ð9Þ

where Cfðx; tÞ is concentration in the flowing zone;

Cmðx;h; tÞ is concentration in the matrix; h is the

distance from the inner point in the matrix towards the

flowing zone; hmax is the size of the matrix (therefore,

h ¼ hmax corresponds to the interface between the

two zones); q0 is Darcy’s velocity; wf is the mobile

zone porosity; w0
m is matrix porosity (defined as

volume of voids per unit volume of matrix); Dm is the

molecular diffusion coefficient; smx is the specific

surface of the matrix (matrix surface area per unit

volume of aquifer) evaluated at the interface.

Different variations of Eq. (9) have been used by

most authors (Rasmuson and Neretnieks, 1980, 1981;

Grisak and Pickens, 1981; Barker, 1982, 1985;

Moench, 1984; Sudicky and Frind, 1992; Malos-

zewski and Zuber, 1993; Novakowski and Lapceviec,

1994; Haggerty and Gorelick, 1995; Kennedy and

Lennox, 1995; Wörman et al., 2003, among others).

Concentration in the matrix, Cm; is given by the

diffusion equation (assuming no retardation)

smðhÞ
›Cm

›t
¼

›

›h
DmsmðhÞ

›Cm

›h


 �
; ð10Þ

where smðhÞ is the specific diffusion surface at depth

h; with smðhmaxÞ ¼ smx: There is a direct relationship

between the diffusion surface and the model selected

for the geometry of the matrix. The three more typical

geometries used for the matrix are that of slabs,

cylinders, and spheres. In these three cases, smðhÞ is

proportional to hn; with n ¼ 0, 1, and 2, respectively.

Eq. (10) is solved subject to

Cmðx; r; t ¼ 0Þ ¼ 0; ð11aÞ

Cmðx; r ¼ 1; tÞ ¼ Cfðx; tÞ at Gm; ð11bÞ

›Cm

›r
ðx; r ¼ 0; tÞ ¼ 0; ð11cÞ

where we have introduced a new notation r ¼ h=hmax;

Eq. (11a) is the initial condition, which corresponds to

initially clean matrix; Eq. (11b) expresses continuity

of concentrations at Gm (or r ¼ 1), which is the

interface between the flowing and matrix zones

(continuity of mass flux was implicitly imposed in

the derivation of Eq. (9)). Finally, Eq. (11c) is the

boundary condition at the innermost portion of the

matrix, which depends on the geometry of matrix

blocks. Thus, r ¼ 1 corresponds to the half distance

between fractures for a slab model, and is equal to the

radius in spheres or cylinders.

Eq. (10) can be solved in Laplace space. After

some minor manipulation Eq. (10) can be rewritten as

1

rn

›

›r
rn ›Cm

›r

 !
2 g2Cm ¼ 0; ð12Þ

where g ¼
ffiffiffiffiffiffi
s=D0

m

p
; s being Laplace variable and D0

m ¼

Dm=h
2
max: Cmðx; r; sÞ is the Laplace transform of the

concentration in the matrix. The general solution to

Eq. (12) subject to BC (Eqs. (11a) and (11c)) and

boundness of the solution is given by Gradshteyn and

Ryzhik (1980), section 8.49, and taking into account

the relationships between Bessel Functions, JnðzÞ; and

Modified Bessel Functions, InðzÞ)

Cmðx; r; sÞ ¼ rn
I2nðgrÞ

I2nðgÞ
Fðx; sÞ; ð13Þ

with n ¼ ð1 2 nÞ=2; and I2nðzÞ stands for Modified

Bessel function of order 2n: Applying BC (Eq.

(11b)), it follows immediately that Fðx; sÞ ¼ Cfðx; sÞ;

where Cfðx; sÞ is the Laplace transform of the

concentration in the mobile phase.

The next step is to go back to the transport Eq. (9)

and get a similar expression for the Laplace transform

of the concentration of the mobile phase, Cfðx; sÞ:

Assuming a pulse injection at point x ¼ 0

(i.e. Cfðx ¼ 0; tÞ ¼ dðtÞ; and after some manipulation
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the solution is

Cfðx; sÞ ¼ exp 2
s

U 0
x2 ðnþ 1Þ

wmD0
m

wf

x

U 0
g

I12nðgÞ

I2nðgÞ


 �
;

ð14Þ

with U 0 ¼ q0=wf and wm ¼ smxw
0
mhmax=ðn þ 1Þ is the

porosity of the matrix (defined as volume of voids per

unit volume of aquifer; recall that w0
m was expressed

per unit volume of matrix).

From here, we can proceed to find the different

moments of the BTC. Again a relatively simple

way to obtain the different TiðxÞ terms is to perform

a McLaurin expansion around s ¼ 0 of the

exponent in Eq. (14), leading to:

Cfðx; sÞ ¼ exp 2
x

U 0
1 þ

wm

wf


 �
s 2 A

wm

wf

s2

D0
m

 (

þB
wm

wf

s3

D0
m2

2 C
wm

wf

s4

D0
m3

þ Oðs5Þ

!)
:

ð15Þ

The values for A; B and C depend on

the geometry model and can be found in Table 1.

From Eq. (5) and by successive derivation, we can

obtain again the temporal moments. The final

expressions are:

T1ðxÞ ¼
xðwm þ wfÞ

q0
; ð16aÞ

s2
tðxÞ ¼ E

1

D0
m

wmx

q0
; ð16bÞ

St ðxÞ ¼ F
1

D0
m2

wmx

q0
; ð16cÞ

M4;tðxÞ ¼ G
1

D0
m2

wm

wf


 �2 x

U 0


 �2

þH
1

D0
m3

wm

q0
x: ð16dÞ

The values for E; F; G and H depend again on the

matrix geometry model and are displayed in Table 2

for the three most common ones. The compact

expressions presented here would allow obtaining

the temporal moments for other geometries in which n

would be a fractional value.

From Eqs. (16a)–(16d), we see that the mean

arrival time is identical to that of a single porosity

media with the total porosity ðwm þ wfÞ of the double

porosity media. This is independent of the value of the

matrix diffusion coefficient, and of matrix block shape

and size. This result was also obtained by Goltz and

Roberts (1987), Harvey and Gorelick (1995) and

Carrera et al. (1998).

Another interesting result is that the second and

third order moments are linear with travel distance,

while the fourth order moment is a second order

polynomial with respect to x: Note that the same

behavior was found for the ADE with a Fickian

macrodispersive term (Eqs. (8a)–(8d)). This implies

that the behavior of the double porosity transport

equation is qualitatively similar to that of single

porosity with a Fickian dispersion term, at least up

to fourth order moments, despite the dissimilarities

discussed in the introduction. While this is nice, it

disproves the conjecture, mentioned in the intro-

duction, that a matrix diffusion term might display

scale dependent dispersion. This would have

required the second order moment (Eq. (16b)) to

incorporate a non-linear term with a behavior of

order x2 for short distances (in order to be

comparable with the expression presented for

example in Cvetkovic et al. (1996)). Still, the

equivalence to Eq. (2) suggests that one may

choose matrix diffusion parameters to yield the

same moments as Fickian transport. This is

discussed in Section 4.

Table 1

Values for A; B; and C in Eq. (15) for different matrix shapes

Matrix shape A B C

Slabs 1/3 2/15 17/315

Cylinders 1/8 1/48 11/3072

Spheres 1/15 2/315 1/1575

Table 2

Values for E; F; G; and H in Eqs. (16a)–(16d) for different matrix

shapes

Matrix shape E F G H

Slabs 2/3 4/5 4/3 136/105

Cylinders 1/4 1/8 3/16 11/128

Spheres 2/15 4/105 4/75 8/525
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4. Identification of terms

4.1. Identification of the travel time statistical

moments

The objective of this section is to find a set of

parameters that makes the first temporal moments

identical in both formulations. In the process of fitting

parameters, it is necessary to keep invariant some

fundamental values. Specifically, we impose that

water flux (Darcy velocity) and total porosity should

be kept invariant. Therefore, porosity ðwÞ used in

Eq. (2) should be equal to total porosity of the double

porosity formulation ðwm þ wfÞ; and both equal to the

value measured by field or lab methods. Therefore:

w ¼ wm þ wf : ð17Þ

Imposing now that Darcy’s velocity be kept

constant in both formulations:

kUlw ¼ kql ¼ q0 ¼ U 0wf : ð18Þ

Substituting Eqs. (17) and (18) in the expressions

for the first temporal moments Eqs. (8a) and (16a), it

results immediately that they are equal. That is,

ensuring that water flux and total porosity remain

invariant leads naturally to the same value for the first

temporal moment.

Now only two independent parameters remain to

be identified, ðwm and D0
mÞ: To that end, we impose the

exact identification of the second and third order

moments; that is, Eqs. (8b), (8c) and (16b), (16c).

This process results in:

D0
m ¼

F

6E

kUl
a11

; ð19aÞ

wm ¼
F

3E2
wf : ð19bÞ

These expressions, as well as the resulting ones for

wf and U 0 for the different matrix shape models, are

presented in Table 3. Finally, for the fourth order

moment is obtained by substituting the expressions for

wm; wf and D0
m into Eq. (16d). This leads to:

M4;tðxÞ ¼
4G

E2

a2
11

kUl4
x2 þ

72EH

F2

a3
11

kUl4
x: ð20Þ

Formally, Eq. (20) looks like Eq. (8d). Most

importantly, for the three models, 4G=E2 equals 12.

Therefore, the leading term is invariant (independent

of matrix shape) and identical to the one for Fickian

dispersion (Eq. (8b)). Only the coefficient in the linear

term of the polynomial varies from model to model.

Defining J ¼ 72EH=F2; the corresponding values for

the three models can be seen in Table 3.

Comparing these last results with Eq. (8d), we see

that the set of parameters that leads to identical first

three temporal moments also leads to an exact

identification of the leading term in the fourth order,

while the linear term in Eq. (8d) is not well

reproduced (giving values in the range (97,101),

depending on the model considered when the

coefficient for the ADE equation was 120). It should

also be noticed that the J values are quite similar,

Table 3

Values for the different parameters that would lead to a total identification of the three first moments of the BTC plus the leading term of the

fourth order

Matrix shape wm D0
m wf U 0 J

Slabs wm ¼
3

5
wf D0

m ¼
1

5

kUl
a11

wf ¼
2

5
w U 0 ¼

5

2
kUl 680/7

Cylinders wm ¼
2

3
wf D0

m ¼
1

12

kUl
a11

wf ¼
1

3
w

U 0 ¼ 3kUl 99

Spheres wm ¼
5

7
wf D0

m ¼
1

21

kUl
a11

wf ¼
2

7
w U 0 ¼

7

2
kUl 504/5
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so that any particular BTC that could be interpreted

using any of the models, would allow using any other

model for matrix diffusion with a different set of

parameters. This is valid only for large travel

distances, where the linear term is less relevant.

Close to the inlet boundary the linear term is

dominant, leading to the well known shape difference

between the BTCs when a matrix diffusion or a

macrodispersion term are considered.

4.2. Analysis and physical interpretation

of the parameters

We discuss now some potential physical interpret-

ation of the parameters obtained in the identification

process. The equivalence in the Darcy velocity that

comes for the expressions for mean travel time is

important, as it means equivalence in flow rates.

As part of the solute gets retarded in the matrix it is

necessary to select an advective velocity, which is

larger than the expected velocity in the heterogeneous

case. In Table 3, we see the ratio of both velocities,

which ranges between ½5=2; 7=2� depending of the

model selected. As Darcy’s velocity is constant, the

only way to have this relationship is to consider a

mobile porosity, which is a small fraction of the total

one. The values range from 2/5 to 2/7. Therefore, the

immobile porosity is slightly larger than the mobile

one for all models in this type of identification.

On the other hand D0
m is a diffusion type parameter.

It indicates the facility of the solute to move from the

mobile to the immobile zone and vice versa. From

Eq. (19a), it follows that D0
m becomes inversely

proportional to a11; and directly proportional to kUl:
Regarding the latter, the reason is that large kUl will

not allow diffusion to act long enough; then, only a

small quantity of solute will go into the immobile

zone, and the variance would decrease. The propor-

tionality between D0
m and kUl is of outmost import-

ance. The main difference between dispersion and

diffusion is precisely their dependence on velocity.

Dispersion is caused by heterogeneous velocity and

should be nearly invariant to changes in gradient. That

is, if the regional gradient is multiplied by a factor of

two, then all velocities should also be multiplied by

that factor. The plume then will move twice as fast,

but the dispersing paths will remain identical. As a

result, the same plume shape will be reached, only

twice as fast. Because of this, matrix diffusion fittings

of BTCs have sometimes been regarded as fitting

tricks, leading to models without predicting capabili-

ties. What our findings suggests is that prediction

capabilities will be maintained provided that matrix

diffusion is taken as proportional to water flux, at least

the portion of matrix diffusion aimed at representing

dispersion.

Examination of the second moment of the BTCs

yields the explanation for the inverse relationship

between D0
m and a11: A large value of a11 leads to a

larger variance of travel time. The effect is the

opposite for D0
m; as a large value tends to homogenize

the concentrations at the mobile phase and the matrix,

leading to a behavior closer to instantaneous equili-

brium and consequently a reduction in the variance of

travel time.

Two final comments; when the identification

process is performed, we see that we can fit the first

three moments, but that the homogeneous media with

matrix diffusion leads to smaller fourth order

independently of the matrix particle model selected.

In any case, the difference decreases with increasing

travel distance, as the leading term coincides for

all models.

Last, it could be possible to extend the method-

ology to higher order moments. The problem then

would be the error associated to the evaluation of

these terms. In general, the BTC has a considerable

tailing. High order moments are then extremely

uncertain.

5. Conclusions

The main conclusion from our work is that

macrodispersion (or any kind of Fickian dispersion,

for that matter) can be represented by means of a term

that expresses exchange of solutes between mobile

and immobile zones (MD). Using this term instead of

the Fickian dispersion term of the conventional ADE

allows reproducing the first three moments of the BTC

and nearly so the fourth one.

Therefore, in principle, it would be possible to use

indistinctly MD or ADE in order to represent

macrodispersion in a given heterogeneous aquifer.

One may even argue that the matrix-diffusion

representation is more convenient than the Fickian
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representation of dispersion. Actually, it displays

the asymmetry expected in spatial distribution of

concentrations, which a Fickian representation does

not. Also, it allows restricting Fickian dispersion to

the local one, thus avoiding the negative side effects

of large dispersivities (such as upstream dispersion).

However, the proposed representation of dispersion

fails to match the time evolution of the second-order

moment of travel time. Therefore, while it might be

convenient as an alternative for the macrodispersive

ADE, it cannot avoid the fact that the fitted parameters

would also be time dependent, thus restricting their

applicability to real cases, same as a single value of

dispersion is not valid to fit solute transport at

different scales.

From Eq. (19a), the diffusion coefficient obtained

by representing dispersion with a matrix diffusion

term depends on velocity. Since matrix diffusion is

often used to fit BTCs displaying long tails, and

tailing is likely to be caused by a combination of

both true (velocity independent) diffusion and

heterogeneity, the resulting model will not be able

to predict dispersion at different flow rates unless the

diffusion coefficient is modified accordingly. There-

fore, one would need to perform tests with different

flow rates so as to discriminate the dependence on

velocity of the fitting parameter or, in other words,

the contribution of true diffusion and heterogeneity to

transport.

Our results can also be seen from another point of

view. When interpreting BTCs from tracer tests,

hydrogeologists face the problem of having to infer

the processes that the solute has undergone. The

possibility of fitting similar temporal moments with

different conceptual models shows that the simple

study of the curve would not allow the identification

of processes. While, we have studied only two

conceptual models (MD and ADE), we must keep in

mind that a solute that undergoes mass-transfer rate-

limited processes that are controlled by reactions

kinetics would have a BTC practically indistinguish-

able from that of a solute undergoing first order

matrix diffusion (Selroos and Cvetkovic, 1992;

Haggerty and Gorelick, 1995). Therefore, it would

be possible to obtain a third set of parameters that

could also fit a particular BTC with the same quality

of fitting.
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