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Abstract

We investigate effective solute transport in a chemically heterogeneous medium subject to temporal fluctuations of the flow condi-
tions. Focusing on spatial variations in the equilibrium adsorption properties, the corresponding fluctuating retardation factor is mod-
eled as a stationary random space function. The temporal variability of the flow is represented by a stationary temporal random process.
Solute spreading is quantified by effective dispersion coefficients, which are derived from the ensemble average of the second centered
moments of the normalized solute distribution in a single disorder realization. Using first-order expansions in the variances of the respec-
tive random fields, we derive explicit compact expressions for the time behavior of the disorder induced contributions to the effective
dispersion coefficients. Focusing on the contributions due to chemical heterogeneity and temporal fluctuations, we find enhanced trans-
verse spreading characterized by a transverse effective dispersion coefficient that, in contrast to transport in steady flow fields, evolves to a
disorder-induced macroscopic value (i.e., independent of local dispersion). At the same time, the asymptotic longitudinal dispersion coef-
ficient can decrease. Under certain conditions the contribution to the longitudinal effective dispersion coefficient shows superdiffusive
behavior, similar to that observed for transport in s stratified porous medium, before it decreases to its asymptotic value. The presented
compact and easy to use expressions for the longitudinal and transverse effective dispersion coefficients can be used for the quantification
of effective spreading and mixing in the context of the groundwater remediation based on hydraulic manipulation and for the effective
modeling of reactive transport in heterogeneous media in general.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The quantitative and qualitative understanding of trans-
port in heterogeneous hydrogeochemical systems is of crit-
ical importance for transport modeling in natural
groundwater systems, and as such a precondition for the
analysis of groundwater contamination problems and for
the design of soil and aquifer remediation strategies.

Local scale physical and chemical medium heterogene-
ities lead to an effective large scale transport behavior that
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is qualitatively and quantitatively different from the one
observed in homogeneous media. The interaction of spatial
fluctuations of the system parameters and local scale trans-
port processes leads in general to enhanced solute spread-
ing and mixing. The influence of spatially fluctuating
physical and chemical system properties, such as hydraulic
conductivity and sorption properties, for example, on sol-
ute transport has been studied extensively during the last
two decades within the stochastic perturbative approach
e.g. [1–6], among others. The later studies disregard the
effects of local dispersion or focus on the asymptotic long
time behavior of solute transport. The full temporal evolu-
tion of effective solute spreading in a chemically and phys-
ically heterogeneous medium for finite local dispersion has
been studied in terms of the time behavior of effective
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dispersion coefficients, see e.g. [7–9]. The stochastic pertur-
bative analysis yields an increase of the longitudinal effec-
tive dispersion coefficient to a macroscopic value as a
result of physical and chemical medium heterogeneities,
which is in agreement with experimental and numerical
findings. The predicted asymptotic transverse dispersion
coefficients, however, consistently underestimate numerical
and experimental observations by at least one order of
magnitude e.g. [10–12]. Recently, the scale dependence of
macrodispersion and effective retardation factors for reac-
tive chemicals have been studied in laboratory scale exper-
iments [13] and critically compared to stochastic theories
[14]. Lichtner and Tartakovsky [15] studied upscaled effec-
tive rate constants for heterogeneous reactions and their
evolution with time, which are intimately connected to
the observed scale dependence.

Transverse mixing is an important process for geochem-
ical processes in rivers [16], stream–aquifer interactions
[17], saltwater intrusion [18,19], and microbial reactions
[20,21]. The importance of transverse mixing for reactive
transport modeling including precipitation (dissolution)
reactions has recently been shown by [22]. As such, the cor-
rect quantification of transverse mixing and spreading is
significant for the assessment of remediation schemes that
rely on the efficient mixing of a reactant with the solved
contaminant.

In addition to spatial fluctuations of the system param-
eters due to physical and chemical medium heterogeneities,
groundwater flow in general also fluctuates temporally on a
range of scales including hyper annual climatic fluctua-
tions, seasonal and irrigation cycles and daily barometric
fluctuations, for example. Such temporal flow fluctuations
were first recognized as a source of enhanced solute spread-
ing by Kinzelbach and Ackerer [23]. Rehfeldt and Gelhar
[24] presented a stochastic approach for the quantification
of the impact of temporal flow fluctuations in a physically
heterogeneous medium. Within such a stochastic frame-
work, Kabala and Sposito [25] studied macrodispersion
for reactive transport in a spatially heterogeneous medium.
Solute spreading in a heterogeneous medium for periodic
(deterministic) time fluctuations of the hydraulic gradient
for purely advective transport (vanishing local dispersion)
has been analyzed by, e.g., Zhang and Neuman [26] and
Dagan et al. [27]. Recently, Cirpka [28] studied the
enhancement of transverse dispersion of kinetically sorbing
compounds in spatially uniform flow field under sinusoidal
(deterministic) temporal fluctuations and vanishing local
dispersion.

A recent approach to characterize and quantify effective
spreading and mixing in time-fluctuating flow through a
physically heterogeneous medium is an analysis in terms
of effective dispersion coefficients [29–31]. Effective disper-
sion coefficients characterize effective solute spreading and
mixing in an heterogeneous environment [7,8,32]. For
transport in time fluctuating spatial random flow fields, it
was shown that the interaction between temporal fluctua-
tions, local dispersion and spatial heterogeneity leads to
macroscopic contributions to the longitudinal as well as,
and more importantly, the transverse effective dispersion
coefficients [29–31].

Here we study the impact of the interaction of local
dispersion, chemical heterogeneity and temporal fluctua-
tions of the flow conditions on the effective transport
behavior of a sorbing solute. We focus on linear sorption
reactions under instantaneous local equilibrium condi-
tions. In a chemical heterogeneous medium, the local
sorption properties are subject to spatial fluctuations,
which can be characterized by a spatially varying retarda-
tion coefficient. The effective transport behavior in this
practically relevant scenario is studied within a stochastic
perturbative approach. Within this approach we derive
compact analytical expressions for the temporal evolution
of the longitudinal and transverse effective dispersion
coefficients.
2. Basics

The objective is to quantify effective solute spreading
and mixing of a sorbing chemical in terms of effective trans-
port coefficients. To this end, in the following we define the
observables that characterize solute spreading and mixing.
We present the stochastic model used, and lay out the per-
turbation method to solve the resulting stochastic transport
problem.

2.1. Observables

The total concentration distribution of the sorbing
chemical is divided into a mobile fraction that is trans-
ported in the flow through the medium, and a fraction that
is adsorbed to the solid matrix,

cðx; tÞ ¼ /ðxÞcmðx; tÞ þ ½1� /ðxÞ�cadðx; tÞ; ð1Þ
where cm(x, t), and cad(x, t) denote the spatial distributions
of the mobile and adsorbed concentrations, respectively;
and /(x) denotes porosity.

As the simplest measures for the analysis of the evolu-
tion of the sorbing chemical, we study the effective center
of mass velocity and effective dispersion coefficients of
the (normalized) distribution density of mobile solute frac-
tion [7],

pðx; tÞ ¼ cmðx; tÞR
ddycmðy; tÞ

: ð2Þ

In a given aquifer the center of mass velocity and disper-
sion coefficients are defined by

ujðtÞ ¼
d

dt
mð1Þj ðtÞ; ð3Þ

DijðtÞ ¼
1

2

d

dt
½mijðtÞð2Þ � mð1Þi ðtÞm

ð1Þ
j ðtÞ�; ð4Þ

where mð1Þi ðtÞ and mð2Þij ðtÞ are the first and second moments
of the normalized spatial concentration distribution, de-
fined as
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mð1Þi ðtÞ ¼
Z

ddxxipðx; tÞ; ð5Þ

mð2Þij ðtÞ ¼
Z

ddxxixjpðx; tÞ: ð6Þ

As detailed in Section 2.3, in a stochastic analysis, the spa-
tially heterogeneous aquifer is identified with one particular
realization of an ensemble of aquifer realizations, while the
temporally fluctuating groundwater flow is modeled by a
correlated stationary random process. In such an ap-
proach, the effective transport coefficients can be expressed
as averages over the ensemble of all possible realizations of
the spatial and temporal random processes. The effective
transport velocity and dispersion coefficients are then de-
fined as the ensemble averages over their local scale coun-
terparts (3) and (4), respectively, [29,31],

ueff
i ðtÞ ¼ hujðtÞi ¼

d

dt
hmð1Þj ðtÞi; ð7Þ

Deff
ij ðtÞ ¼ hDijðtÞi ¼

1

2

d

dt
½hmð2Þij ðtÞ � mð1Þi ðtÞm

ð1Þ
j ðtÞi�; ð8Þ

where the overbar denotes the average over the spatial ran-
dom field, the angular brackets denote the average over the
temporal random process. The effective dispersion coeffi-
cient characterizes physical spreading and mixing in a typ-
ical disorder realization (e.g. [7,32]), as opposed to the
frequently considered ensemble dispersion coefficients,
which are derived from the ensemble averaged concentra-
tion distribution. The effective dispersion coefficient for fi-
nite local dispersion has been analyzed by [7–9] for
transport in a physically and chemically heterogeneous
medium under steady flow conditions, and [29–31] for pas-
sive transport in temporally fluctuating flow. The relevance
of effective dispersion coefficients for the quantification of
solute mixing and thus for reactive transport modeling
has been outlined by [33–35]. Thus, here we focus exclu-
sively on the analysis of the effective transport velocity
and dispersion coefficients.
2.2. Transport model

The temporal evolution of the mobile concentration
cm(x, t) under spatially varying equilibrium sorption prop-
erties can be described by (e.g. [7]),

RðxÞ ocmðx; tÞ
ot

þ qðx; tÞ � rcmðx; tÞ � rD0rcmðx; tÞ

¼ qðxÞdðtÞ; ð9Þ

where the retardation coefficient is defined by [7],

RðxÞ � /ðxÞ þ ½1� /ðxÞ�kdðxÞ; ð10Þ
with a positive spatially varying distribution coefficient
kd(x). Note that for technical convenience t 2 ð�1;þ1Þ,
see e.g. [7].

The (constant) local dispersion tensor D0 is assumed to
be diagonal, i.e., Dij ¼ dijDij; qðx; tÞ is the divergence-free
spatio-temporally fluctuating Darcy velocity (e.g. [24,29]).
The right side of (9) represents the initial condition for an
instantaneous solute injection at t = 0, cm(x, t = 0) = q(x).
This implies for the mobile concentration cmðx; t ¼ 0Þ ¼
RðxÞ�1qðxÞ.

Here we study transport for a solute evolving from a
point-like injection at t = 0, i.e., qðxÞ ¼ dðxÞ. We assume
vanishing concentration at the boundaries at infinity.
2.3. Stochastic model

The spatially fluctuating retardation factor R(x) and the
hydraulic conductivity K(x) here are modeled as stationary
spatial random fields, while the temporal fluctuations of
the flow boundary conditions that induce a fluctuating
mean hydraulic gradient are modeled as a stationary tem-
poral random process (e.g. [24,29])

We split the retardation factor into its mean value and
fluctuations about it

RðxÞ ¼ R½1� lðxÞ�; ð11Þ
where R is the ensemble averaged retardation factor, l(x)
denotes the normalized fluctuation, whose ensemble aver-
age is zero by definition, lðxÞ ¼ 0. The correlation function
of the normalized retardation fluctuations is given by

lðxÞlðx0Þ ¼ r2
llCllðx� x0Þ; ð12Þ

where the variance r2
ll ¼ lðxÞ2. The correlation function

Cll is assumed to decay exponentially fast for distances lar-
ger than the correlation length l.

Rescaling the mobile concentration and the flow velocity
as well as the local dispersion coefficients by mean retarda-
tion according to,

gðx; tÞ ¼ Rcmðx; tÞ; D ¼ D0

R
; uðx; tÞ ¼ qðx; tÞ

R
; ð13Þ

we obtain from (9) a transport equation for g(x, t),

ogðx; tÞ
ot

þ uðx; tÞ � rgðx; tÞ � r �Drgðx; tÞ

¼ dðxÞdðtÞ þ lðxÞ ogðx; tÞ
ot

: ð14Þ

Note that the normalized mobile concentration (2) reads in
terms of the rescaled mobile concentration g(x, t) as,

pðx; tÞ ¼ gðx; tÞR
ddygðy; tÞ

: ð15Þ

For quasi-steady flow conditions, i.e., instantaneous prop-
agation of a temporal change in the flow boundary condi-
tions, the normalized first-order solution of the flow
problem (in the fluctuations of the log-hydraulic conductiv-
ity) can be decomposed as (e.g. [24,29])

uðx; tÞ ¼ uðtÞ � u0ðx; tÞ: ð16Þ
The mean flow direction is aligned with the 1-direction of
the coordinate system

huðx; tÞi ¼ ue1 ð17Þ
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with e1 the unit vector in 1-direction. The purely time-
dependent part is given by

uðtÞ ¼ u e1 � mðtÞ½ � ð18Þ
with the normalized purely temporal velocity fluctuations
m(t), whose mean is zero by definition,

hmðtÞi ¼ hu0ðx; tÞi � 0: ð19Þ
A brief discussion of the quality of the approximation of
quasi-steady flow is given in [31]. The correlation functions
of the normalized temporal velocity fluctuations m(t) are gi-
ven by

hmiðtÞmjðt0Þi ¼ r2
mmC

mm
ij ðt � t0Þ ð20Þ

with the variance r2
mm of the temporal fluctuations, which,

for simplicity, is assumed to be equal in all directions.
The correlations of the mi(t) are assumed to be short range,
i.e., to decrease quickly for times larger than the correlation
time s.

Using decomposition (16) in (14), we obtain our work-
ing equation

ogðx; tÞ
ot

þ uðtÞ � rgðx; tÞ � rDrgðx; tÞqðxÞdðtÞ

þ lðxÞ ogðx; tÞ
ot

þ u0ðx; tÞ � rgðx; tÞ: ð21Þ
2.4. Perturbation expansion

In the following we develop a perturbation expansion
for g(x, t) up to first-order in the variances of the random
fields. (Note that ultimately one is expanding in the vari-
ances of the random fields, which in general need to be
small for the perturbation results to be meaningful). This
expansion serves as the basis for corresponding expansions
for the effective transport velocity and dispersion
coefficients.

2.4.1. Solute distribution

We reformulate the transport equation (21) in terms of
an equivalent integral equation in Fourier space, from
which we derive a perturbation solution of the transport
problem. The Fourier transform ~gðk; tÞ of gðx; tÞ here is
defined by

~gðk; tÞ ¼
Z

ddxgðx; tÞ expðik � xÞ; ð22Þ

gðx; tÞ ¼
Z

k
~gðk; tÞ expð�ik � xÞ; ð23Þ

where Fourier-transformed quantities are marked by a
tilde. Here and in the following we employ the short-hand
notation,

Z
k
� � � ¼

Z
ddk

ð2pÞd
. . . ð24Þ

The integral equation for ~gðk; tÞ is given by (see e.g. [29,31])
~gðk; tÞ ¼ ~g0ðk; t;0Þ~qðkÞ

þ
Z

k0

Z 1

�1
dt0~g0ðk; t; t0ÞLðk;k0; t0Þ~gðk� k0; t0Þ; ð25Þ

with the perturbation operator defined by,

Lðk; k0; tÞ � ~lðk0Þ o

ot
� ik~u0ðk0; t0Þ: ð26Þ

We used here the incompressibility condition k � ~uðk; tÞ ¼ 0.
The Fourier-transformed Green function of the transport
problem (21) for l(x) = 0 and u0ðx; tÞ ¼ 0, denoted in
(25) by ~g0ðk; t; t0Þ reads as (e.g. [31]),

~g0ðk; t; t0Þ ¼ exp �kDkðt � t0Þ þ ik �
Z t

t0
dsuðsÞ

� �
Hðt � t0Þ

ð27Þ
with H(t) the Heaviside step function as defined in [36].

Iteration of the integral equation (25) yields a perturba-
tion series for ~gðk; tÞ in terms of the perturbation operator
Lðk; k0; tÞ,

~gðk; tÞ ¼ ~g0ðk; t; 0Þ~qðkÞ þ
Z

k0

Z 1

�1
dt0~g0ðk; t; t0ÞLðk;k0; t0Þ

� ~g0ðk� k0; t0; 0Þ þ
Z

k0

Z 1

�1
dt0
Z

k00

Z 1

�1
dt00~g0ðk; t; t0Þ

�Lðk;k0; t0Þ~g0ðk� k0; t0; t00Þ � Lðk� k0;k00; t00Þ
� ~g0ðk� k00 � k00; t00; 0Þ þ � � � : ð28Þ

This series expansion truncated after the second-order in L

constitutes the basis for the following perturbation
analysis.

Note that the Green function ~g0ðk; t; t0Þ, (27), depends
on the temporal fluctuations mi(t). To obtain consistent
expressions for the transport coefficients, ~g0ðk; t; t0Þ will be
expanded in powers of m(t) in the following (e.g. [29,31])

~g0ðk; t; t0Þ ¼ ~c0ðk; t� t0Þ 1þ uik �
Z t

t0
dt00mðt00Þ þ � � �

� �
Hðt� t0Þ:

ð29Þ

We defined here

~c0ðk; tÞ ¼ expð�kDkt þ ik1utÞ; ð30Þ

which is the Fourier transform of the solution of (21) for
mðtÞ ¼ u0ðx; tÞ � 0, and l(x) = 0.

2.4.2. Transport coefficients

The effective transport velocity ueff
i ðtÞ, (7), and the dis-

persion coefficients Deff
ij ðtÞ, (8), can be expressed in terms

of the Fourier transform of p(x, t) as (e.g. [7,8])

ueff
i ðtÞ ¼

1

i

d

dt
o

oki
hln ~pðk; tÞijk¼0 ð31Þ

Deff
ij ðtÞ ¼ �

1

2

d

dt
o

oki

o

okj
hln ~pðk; tÞijk¼0 ð32Þ

with the Fourier transform of p(x, t) given by
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~pðk; tÞ ¼ ~gðk; tÞ
~gð0; tÞ : ð33Þ

Relations (31) and (32) can be readily verified by using the
definition of the Fourier transform (23).

Inserting (28) into (32) and expanding the resulting
expression for small variances of the random fields the dis-
persion coefficients decompose into,

Deff
ij ðtÞ ¼ Dij þ dllDeff

ij ðtÞ þ duuDeff
ij ðtÞ þ dulDeff

ij ðtÞ þ dlmDeff
ij ðtÞ
ð34Þ

and accordingly for the effective center of mass velocity
(31). Note that, strictly speaking, for such an expansion
to be valid, the variances of the random fields are required
to be small. The validity of such a simultaneous expansion
in the variances of the spatial and temporal random fields
has been discussed in [31].

The effective dispersion coefficient Deff
ij ðtÞ is given by the

sum of the contributions due to (i) local dispersion Dij, (ii)
chemical heterogeneity dllDeff

ij (see [7]), (iii) physical heter-
ogeneity and temporal fluctuations of the flow conditions
duuDeff

ij (see e.g. [8,9,29,31]), (iv) cross-correlations between
physical and chemical heterogeneity dulDeff

ij (see e.g. [8] for
the steady state case), and (v) the interaction between tem-
poral fluctuations and chemical heterogeneity dlmDeff

ij .
In the following, we focus on a physically homogeneous,

chemically heterogeneous medium, which implies
duuDeff

ij ¼ dulDeff
ij ¼ 0. This kind of simplified model may

be appropriate to describe the transport of an organic sol-
ute in an aquifer which is relatively homogeneous with
respect to the hydraulic conductivity, but has a strongly
varying organic carbon content (e.g. [28]).

Thus, we study dlmDeff
ij and its relative importance with

respect to the contribution dllDeff
ij due to chemical hetero-

geneity only [7]. Explicit expressions for dlmueff
i and dlmDeff

ij

are given in Appendix A.

2.4.3. Time scales and effective parameters

The temporal evolution of the effective dispersion coef-
ficients is determined by three characteristic time scales,
su, sDi , and sj. The advection time scale su measures the
time for the solute to be advected over one longitudinal
correlation length l1,

su ¼
l1

u
: ð35Þ

The dispersion time scales sDi characterize the time for dis-
persive transport over one correlation length li,

sDi ¼
l2

i

Dii
: ð36Þ

The Kubo time scale sj [31], measures the time for the local
dispersive spreading over an effective length that is given by
the correlation length l and the Kubo length lj ¼ us,

sj ¼ ð1þ j2ÞsD1
¼ ðl2 þ l2

jÞsD1
: ð37Þ
We defined here the non-dimensional Kubo number,
j ¼ s=su ¼ lj=l1, which compares the correlation time s
to the advection time scale su, and equivalently the Kubo
distance lj ¼ us (which denotes the length over which the
solute is advected by the mean flow during one correlation
time s) to the correlation length in direction of the mean
flow l1.

The non-dimensional Peclet numbers Pei ¼ sDi=su com-
pare the strength of advective and dispersive transport
mechanism. In many hydrological applications transport
is advection dominated, which implies large Peclet num-
bers, Pe� 1, or accordingly, small inverse Peclet numbers
�i � su=sDi ¼ Diil1=ðul2

i Þ. In the following we will develop
simple compact expressions for the effective dispersion
coefficients under the assumption of small �i.

Note that for times smaller than the advection timescale,
t 6 su, the solute has moved by mean advection over a dis-
tance shorter than the correlation length l1 of the medium,
and has spread by local dispersion over a distance which is
much smaller than the corresponding correlation distance.
On such short scales the medium looks quasi homogeneous
and the solute does not ‘‘see’’ the heterogeneity of the med-
ium. Thus, the spatial ensemble average and accordingly
the effective parameters defined as ensemble averages, have
only a limited formal meaning for t 6 su as there can be
large sample to sample fluctuations between the disorder
realizations. Correspondingly, for times smaller than the
correlation time s (or equivalently, for transport distances
smaller than the Kubo distance lj), the flow field appears
to be quasi steady, and the temporal average has only a for-
mal meaning. The impact of spatial heterogeneity and tem-
poral fluctuations can be quantified in terms of effective
parameter only if the solute has sampled a representative
part of the spectrum of spatio-temporal variability.

Appendix A summarizes the somewhat lengthy calcula-
tions that lead to the expressions for the effective center of
mass velocity and dispersion coefficients presented in the
following. We employ an expansion for small inverse Peclet
numbers �i � 1 and time large compared to the advection
time scale t� su (e.g. [31]) in order to simplify the lengthy
expressions given in Appendix A.

2.4.3.1. Effective center of mass velocity. The leading contri-
butions for small �i to the effective center of mass velocity,
dlmueff

i , are given by (see Appendix A),

dlmueff
i ðtÞ ¼ ur2

llr
2
mm

Z
k0

~Cllðk0Þ½di1Aðk0; tÞ þ Aiðk0; t; 0Þ�

� expð�iuk01tÞ þ � � � ; ð38Þ

where the dots denote subleading contributions of the or-
der of the inverse Peclet numbers. The auxiliary functions
A(k,t) and Aiðk0; t; 0Þ are defined by (A.18) and (A.19) in
Appendix A. For short-range correlation functions, expres-
sion (38) decreases exponentially fast on the advection time
scale su.
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2.4.3.2. Effective dispersion coefficients. As outlined in
Appendix A, the leading behavior of dlmDeff

ij ðtÞ for small
inverse Peclet numbers is given by,

dlmDeff
ij ðtÞ ¼ u2r2

llr
2
mm

Z
k0

Z t

0

dt0 ~Cllðk0Þ½di1dj1Aðk0; t0Þ

þ dj1Aiðk0; t0; 0Þ þ di1Ajðk0; t0; 0Þ þ Cmm
ij ðt0Þ�

� expð�iuk01t0Þ½1� expð�2k0j
2l2

j t=sDjÞ�: ð39Þ
3. Explicit expressions for the effective dispersion coefficients

We focus on a transport situation for which the tempo-
ral fluctuations are transverse to the direction of the mean
flow velocity, mðtÞ ¼ ½0; m2ðtÞ; . . . ; mdðtÞ�T. In this case, (39)
simplifies to,

dlmDeff
ij ðtÞ ¼ u2r2

llr
2
mm

Z
k0

Z t

0

dt0 ~Cllðk0Þ

� ½di1dj1Aðk02; . . . ; k0d; t
0Þ þ Cmm

ij ðt0Þpipj�

� expð�iuk01t0Þ½1� expð�2k0j
2l2

j t=sDjÞ�; ð40Þ
where we defined pi ¼ ð1� di1Þ. In the following, we study
without loss of generality fluctuations in 2-direction, i.e.,

miðtÞ ¼ di2mðtÞ: ð41Þ
Using (41) in (20), the correlation matrix Cmm

lmðtÞ reduces to,

Cmm
lmðtÞ ¼ dl2dm2CmmðtÞ: ð42Þ

To derive explicit results, we need to specify the spatial and
temporal correlation functions. The specific form of the
spatial and temporal correlation functions Cll and Cmm is
to some extent arbitrary. A convenient choice made in
the literature are Gauss-shaped functions. The temporal
fluctuations of the flow field are assumed to be Gaussian
correlated (e.g. [31]), i.e.,

CmmðtÞ ¼ exp � t2

2s2

� �
; ð43Þ

with s the correlation time. In analogy to [7], we use a
Gaussian shaped correlation function for the retardation
field l, which in Fourier space reads as,

CllðkÞ ¼ ð2pÞ
d
2

Yd

i¼1

li exp � 1

2
ðkiliÞ2

� �
: ð44Þ

The length scales li are the correlation lengths of the retar-
dation fields in direction i (with i ¼ 1; . . . ; d).

Inserting (42) with (43) and (44) into (40) and using
(A.18) for Aðk02; t0Þ, we obtain,

dlmDeff
ii ðtÞ ¼ ul1r

2
llr

2
mm

Z
k0

Z t=su

0

dt0 di1
l2

1

l2
2

k02
2

2

Z t0

0

dy
Z t0

0

dy 0
"

� exp �ðy � y0Þ2

2j2

" #
þdi2 exp � t0

2

2j2

 !#

� expð�ik01t0Þ 1� exp �
k0j

2

2
ð1þ 4t=sDjÞ

" #( )
:

ð45Þ
In the following we will restrict ourselves to isotropic disor-
der scenario, i.e., l1 ¼ � � � ¼ ld. Then, for times large com-
pared to the advection time scale su, we obtain the
following compact expressions for the effective dispersion
coefficients,

dlmDeff
11 ðtÞ ¼

ffiffiffi
p
2

r
r2

llr
2
mmul

j2

aðjÞ

"
aðjÞ � 1þ ð1þ 4t=sjÞ

1
2� aðjÞ

h i

�ð1þ 4t=sD2
Þ�

3
2

Yd

n¼3

ð1þ 4t=sDnÞ
�1

2

#
; ð46Þ

dlmDeff
22 ðtÞ¼

ffiffiffi
p
2

r
r2

llr
2
mmulaðjÞ 1�ð1þ4t=sjÞ�

1
2

Yd

n¼2

ð1þ4t=sDnÞ
�1

2

" #
;

ð47Þ

where we defined aðjÞ ¼ j=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ 1
p

. The dlmDeff
ii � 0 for

i > 2 for symmetry reasons.
Note that dlmDeff

11 6 0, while dllDeff
11 þ dlmDeff

11 P 0, for
small r2

mm. For increasing r2
mm, this contribution can become

negative, which, however, is a relic of the perturbation
expansion in r2

mm, see Appendix A. Note that expansions
in the fluctuations of the random fields can lead to non-
convergent series for some transient non-linear reactive
transport problems [38]. For the linear reactive transport
problem under consideration here, however, the non-phys-
ical behavior of dllDeff

11 þ dlmDeff
11 6 0 is purely a relic of the

small r2
mm expansion.

For comparison we give here the explicit approximate
expressions obtained by Attinger et al. [7] for dllDeff

ii , in d

dimensions,

dllDeff
11 ðtÞ ¼

ffiffiffi
p
2

r
r2

llul 1�
Yd

n¼2

1þ 4t
sDn

� ��1
2

" #
; ð48Þ

dllDeff
ii ðtÞ ¼ 0: ð49Þ

Note, firstly, that the time evolution of dllDeff
11 depends

only on the transverse dispersion scale, and secondly that
there is no macroscopic contribution to the transverse dis-
persion coefficient.
4. Effective transport behavior

It was shown by Attinger et al. [7] for transport under
steady flow conditions that chemical medium heterogene-
ities change the behavior of the longitudinal dispersion
coefficient in a quantitatively relevant way, whereas trans-
verse solute spreading is only weakly influenced by the
fluctuations of the retardation factor. As we saw at the
end of the previous section, the effective transverse dis-
persion coefficient is in fact of the order of the local dis-
persion coefficient. For transport under a temporally
fluctuating flow conditions, the behavior of transverse
and longitudinal effective dispersion coefficients is
different.

In the following, we investigate the asymptotic long time
behavior and the temporal evolution of the effective disper-
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sion coefficients in d = 2 dimensions. All results are nor-
malized by

ffiffi
p
2

p
r2

llr
2
mmul. The behavior in d = 3 dimensions

is qualitatively similar.

4.1. Asymptotic long time behavior

We study here the asymptotic behavior of the contribu-
tions to the effective dispersion coefficients for isotropic
local dispersion, D11 ¼ D22 ¼ D, as a function of the Kubo
number j. We define for the following,

lim
t!1

dlmDeff
11 ðtÞ ¼ dlmD111ðjÞ; ð50Þ

lim
t!1

dlmDeff
22 ðtÞ ¼ dlmD122ðjÞ: ð51Þ

Fig. 1 illustrates the asymptotic behavior of dlmD122ðjÞ and
dlmD111ðjÞ. Both contributions to the longitudinal and trans-
verse effective dispersion coefficients tend to zero in the lim-
it j! 0. In this limit, the correlation time s is much
smaller than the advection time su, or equivalently, the
Kubo length is much smaller than the correlation length,
lj � l. Thus, for many correlation times, the medium
looks quasi homogeneous to the transported solute and,
as shown by Dentz and Carrera [29], there are no contribu-
tions to effective solute spreading due to temporal velocity
fluctuations in homogeneous media.

For j� 1, dlmD122ðjÞ increases linearly,

dlmD122ðjÞ ¼
ffiffiffi
p
2

r
r2

llr
2
mmulj; ð52Þ

as illustrated in Fig. 1. In this regime, the Kubo length is of
the order of the spatial correlation length, lj K l, i.e., the
solute samples the spatial heterogeneity during one ‘‘fluctu-
ation cycle’’ (i.e., within the correlation time), which leads
to enhanced spreading in transverse direction.

dlmD111ðjÞ, in contrast, decreases linearly in the same j-
interval,
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Fig. 1. Asymptotic behavior of the contributions to the effective disper-
sion coefficients due to chemical heterogeneity and temporal fluctuations
in solid lines. The dashed lines describe the behavior of dlmD122 and dlmD111

according to (52) and (53), respectively.
dlmD111ðjÞ ¼ �
1

2

ffiffiffi
p
2

r
r2

llr
2
mmulj; ð53Þ
see Fig. 1. The contribution to the longitudinal effective
dispersion coefficient decreases as the transverse coefficient
is increasing. This will be discussed in the following.

In contrast to transport under steady flow conditions,
where the disorder-induced contribution to effective trans-
verse dispersion is of the order of local dispersion, here
dlmD122 is macroscopic and dependent on the Kubo number
j. At the same time, the longitudinal dispersion coefficient
decreases as dlmD111 is negative as shown in Fig. 1. The simul-
taneous increase of the transverse and decrease of the longi-
tudinal effective dispersion coefficients can be seen as a
consequence of self-organization of the system. Increased
transverse spreading smoothes the concentration contrasts
along directions normal to the mean flow, which in turn
leads to a decrease of longitudinal effective spreading. A
similar mechanism is known for the Taylor problem of dis-
persion in shear flow [37]. There, solute dispersion is
enhanced as a consequence of the fact that the solute sam-
ples the transverse velocity contrast in the direction vertical
to the mean flow. Vertical concentration contrasts, which
lead to enhanced spreading, are smaller for increasing trans-
verse dispersion. Thus, an increase of the transverse disper-
sion leads to a decrease of the Taylor dispersion coefficient.
4.2. Time behavior

We study the time evolution of the contributions to the
effective dispersion coefficient using the explicit expressions
(46) and (47) for the longitudinal and transverse dispersion
coefficients, respectively. We investigate different scenarios
in order to study the different mechanisms which affect the
behavior of the effective dispersion coefficients. At first we
investigate an isotropic scenario for small and large Kubo
numbers. Secondly, we investigate an anisotropic local dis-
persion scenario varying the longitudinal local dispersion
coefficient.
4.2.1. Isotropic scenario
For the isotropic scenario, the inverse Peclet numbers �i

and the dispersion time scales sDi reduce to �i ¼ � and
sDi ¼ sD for i ¼ 1; . . . ; d.

Figs. 2a and 2b illustrate the time evolution of the con-
tributions dlmDeff

22 to the transverse and dlmDeff
11 to the longi-

tudinal effective dispersion coefficients in d = 2 for
j ¼ 10�1 and j = 10. The dispersion time scale is
sD ¼ 103su, i.e., the advection and dispersion time scales
su and sD are clearly separated.

For large values of j, corresponding to sj � sD, the
Kubo scale sj together with su and sD, separates three differ-
ent time regimes: (i) the intermediate time regime
su � t� sD, (ii) the Kubo time regime sD � t� sj, and
(iii) the long-time regime t� sj. The Kubo scale sets a rel-
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Fig. 2. Time behavior of the contributions to the (a) transverse effective
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dlmDeff
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evant asymptotic time scale. Note that the solute has to be
spread by local dispersion over at least one correlation
length of the medium to ‘‘see’’ the chemical heterogeneity
and it has to be spread over at least one Kubo length lj to
notice the influence of temporal flow fluctuations. Note that
for small j, sj 	 sD, see definition (37), i.e., the Kubo scale
is of importance for large Kubo numbers only. In order to
illustrate this feature, we choose j ¼ 10�1 and j = 10.

(i) Intermediate time regime su � t� sD

In this time regime, spatial heterogeneity is being acti-
vated as a macroscopic spreading mechanism and we
observe a cross-over from local dispersive spreading and
mixing to macroscopic heterogeneity induced effective dis-
persion. The contribution to the effective transverse disper-
sion coefficient, dlmDeff

22 , both for j ¼ 10�1 and j = 10
evolves linearly with time,

dlmDeff
22 ðtÞ ¼

ffiffiffiffiffiffi
2p
p

r2
llr

2
lmulaðjÞ ðj

2 þ 2Þ
ðj2 þ 1Þ

t
sD
þ � � � ; ð54Þ
where the dots denote subleading contributions. Contrary
to the behavior observed under steady flow conditions,
where transverse spreading is mainly given by local disper-
sion, here the transverse dispersion coefficient grows from
the (microscopic) local scale dispersion coefficient to a
macroscopic value. As shown in Fig. 2b, the contribution
to the longitudinal coefficient decreases linearly according
to,

dlmDeff
11 ðtÞ¼�

ffiffiffiffiffiffi
2p
p

r2
llr

2
lmulaðjÞ 2þ3jðj�

ffiffiffiffiffiffiffiffiffiffiffiffi
j2þ1

p
Þ

h i t
sD
þ��� ;

ð55Þ

towards a negative macroscopic value and thus, longitudi-
nal effective dispersion decreases as discussed in Section 4.1.
(ii) Kubo time regime sD � t� sj

For j = 10, dlmDeff
22 , see Fig. 2a, evolves approximately

according to t�1/2, which is identical to the behavior
observed for the longitudinal component under steady state
conditions [7]. For j ¼ 10�1, i.e., sj 	 sD and the Kubo and
long time regimes coincide. The contribution dlmDeff

22 evolves
as t�1 towards its asymptotic macroscopic value. The differ-
ence in the behaviors for j ¼ 10�1 and 10 can be well
observed in Fig. 2a. For j ¼ 10�1 the evolution of the
dlmDeff

22 is faster than for j = 10. Note that for times,
sD � t� sj, the solute has spread out over a distance larger
than the correlation length l, hence, the solute has sampled a
representative part of the chemical heterogeneity. However,
for large Kubo numbers, the Kubo length is much larger
than the correlation length, lj � l, i.e., the solute has been
transported over more than one correlation length without
noticing the temporal variability of the flow. Thus spread-
ing is dominated by the interaction of local dispersion and
chemical heterogeneities, and the behavior of dlmDeff

22 is sim-
ilar to the one observed for the longitudinal dispersion coef-
ficient under steady flow conditions as in this time regime,
m(t) is approximately constant, i.e., there is an approxi-
mately constant transverse velocity component. For
j ¼ 10�1, the solute has spread by local dispersion over dis-
tances larger than both, the correlation length and the
Kubo length. Thus, both spatial heterogeneity as well as
temporal flow fluctuations are activated as macroscopic
spreading mechanisms. For this reason dlmDeff

22 evolves faster
for j ¼ 10�1 than for j = 10. The same behavior can be
observed in Fig. 2 for dlmDeff

11 , which decreases faster for
j ¼ 10�1 than for j = 10 for the reasons given above.
(iii) Long time regime t� sj

As pointed out above, for j ¼ 10�1, the Kubo and long
time regimes coincide. For j = 10, the long time regime is
set by the Kubo scale, see Figs. 2a and 2b. As pointed
out above, only when the solute has been spread out over
distances which are larger than both the correlation and
the Kubo lengths, the interaction between chemical hetero-
geneity and temporal fluctuations are activated as macro-
scopic spreading mechanisms. As discussed above for
j ¼ 10�1, here both dlmDeff

22 and dlmDeff
11 evolve towards their

respective asymptotic values according to t�1, i.e., faster
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than the contribution dllDeff
11 in the absence of temporal

flow fluctuations.
4.2.2. Anisotropic scenario

Here we study the temporal behavior of the effective dis-
persion coefficients for anisotropic local dispersion and iso-
tropic disorder correlation.

Fig. 3a and b illustrate the time behavior of dlmDeff
22 and

dlmDeff
11 for a fixed �1 ¼ 10�1 and varying �2 of

�2 ¼ 10�7; 10�6; 10�5 and �2 ¼ 10�4, in d = 2, for j = 1.
The temporal behavior of dlmDeff

2 ðtÞ is plotted only for the
cases �2 ¼ 10�7 and �2 ¼ 10�4. For the values in between,
the curves are basically identical.

For the isotropic scenario discussed in Section 4.2.1,
sj P sD and the asymptotic long time regime was defined
by the Kubo time scale sj. For the anisotropic scenario
under consideration here, the Kubo scale is smaller than
the transverse dispersion time scale, sj � sD2

. Thus, sD2

defines the relevant asymptotic time scale. These two time
scales, along with the advection scale, define three time
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10�7 and 10�4.
regimes which characterize the interaction of local disper-
sion, spatial heterogeneity and temporal fluctuations: (i)
the Kubo time regime su � t� sj, (ii) the intermediate
time regime sj � t� sD2

, and (iii) the long-time regime
t� sD2

.

(i) Kubo time regime su � t� sj.
In this time regime, the solute has been transported by

advection over a distance larger than the correlation
length l of the chemically heterogeneous medium. Solute
has not been spread by local dispersion over distances lar-
ger than both the correlation length l and the Kubo length
lj. In this regime, temporal fluctuations and spatial heter-
ogeneity are activated as relevant macroscopic spreading
mechanism and we observe a cross-over from microscopic
local dispersion to macroscopic disorder-induced spread-
ing and mixing. The dlmDeff

22 and dlmDeff
11 , see Figs. 3a and

3b, evolve linearly with time, as observed in the isotropic
scenario.
(ii) Intermediate time regime sj � t� sD2

.
Here, the solute has spread by longitudinal local disper-

sion over the Kubo length lj. In transverse direction, how-
ever, the solute has not yet sampled one spatial correlation
length of the medium by transverse local dispersion.

The evolution of dlmDeff
22 for � ¼ 10�4 is different from the

one observed for �2 ¼ 10�7. For �2 ¼ 10�4, dlmDeffD22

evolves faster towards its asymptotic long time value as
transverse local dispersive mixing is more efficient.

The evolution of dlmDeff
11 depends strongly on the value

�2. In this time regime, dlmDeff
11 evolves as t1/2 towards a

maximum, which it assumes for times of about 10�1sD2
.

For steady flow conditions, transport would be quasi uni-
dimensional in this regime, as local transverse dispersion
is subleading. In the presence of transverse flow fluctua-
tions, however, there is vertical mass exchange. The trans-
verse heterogeneity contrasts encountered by the solute
leads then to the anomalous t1/2 growth of dlmDeff

11 . Note
that local transverse dispersion, which smoothes out these
vertical contrasts, is subleading. The anomalous diffusive
behavior found here is similar to the one observed in strat-
ified flow (e.g. [39,40]). The mechanisms are similar, but
slightly different. While in the case of the stratified medium,
local transverse dispersion is the vertical solute spreading
and mixing mechanisms that leads, in interaction with the
vertical velocity contrast, to the characteristic t1/2 growth
of the longitudinal effective dispersion coefficient, here
transverse flow fluctuations cause vertical mass exchange.
These mechanisms, local dispersion and transverse flow
fluctuations, are different.
(iii) Long time regime t� sD2

.
Here, the solute has spread over a correlation length of

the medium by transverse local dispersion. Thus, spatial
heterogeneity has been activated as a macroscopic spread-
ing mechanism. The dlmDeff

22 converges towards its macro-
scopic asymptotic long time value. As a consequence of
the increase in transverse effective dispersion, which leads
to a smoothing out of the vertical heterogeneity contrast,
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dlmDeff
11 , decreases towards its asymptotic long time value.

The transverse dispersion time scale sD2
is a cut-off time

scale for the anomalous diffusive behavior observed in
the previous time regime.
5. Summary and conclusions

We investigate the effective transport of a reactive solute
evolving from a point-like injection through a chemically
heterogeneous medium. We focus on spatially fluctuating
equilibrium sorption properties, which are characterized
by a random retardation factor. The flow velocity is fluctu-
ating in time with fluctuations transverse to the mean flow
direction. In a stochastic modeling framework the spatial
heterogeneity and temporal flow fluctuations are modeled
by means of correlated spatial and temporal random fields.

The effective transport behavior is studied in terms of
effective dispersion coefficients, which quantify the impact
of spatio-temporal fluctuations on effective solute spread-
ing and mixing. Using a first-order perturbation approach
in the variances of the random processes, we derive explicit
compact expressions for the time behavior of the transverse
and longitudinal effective dispersion coefficients.

The effective dispersion coefficients are given as the sum
of the contributions due to (i) local dispersion, (ii) the inter-
action of local dispersion and chemical heterogeneity, (iii)
the interaction of local dispersion physical heterogeneity
and temporal flow fluctuations, (iv) the interaction of local
dispersion and cross-correlations between physical and
chemical heterogeneity, and (v) the interaction between
local dispersion, temporal fluctuations and chemical heter-
ogeneity. Here we focus on a physically homogeneous,
chemically heterogeneous medium and study the latter
contribution.

The time behavior of the effective dispersion coefficients
are dominated by the following time scales: (i) the advec-
tion time scale su ¼ l=u, (ii) the dispersion time scale
sD2
¼ l=D22, which gives the activation time scale for chem-

ical heterogeneities as a relevant macroscopic spreading
mechanism, and (iii) the Kubo time scale sj ¼ ðl2þ
l2
jÞ=D11 which measures the time for the local dispersive

spreading over a distance larger than both the correlation
length l and the Kubo length, lj ¼ us. Only after the time
sj, the interaction between chemical heterogeneities and
temporal flow fluctuations is activated as a macroscopic
spreading mechanism.

Due to the interaction of temporal flow fluctuations and
chemical heterogeneity, transverse effective dispersion
evolves towards a macroscopic asymptotic value, which is
in sharp contrast to the corresponding results for steady
flow conditions, where no macroscopic contribution to
transverse effective dispersion has been found.

In order to study the different spreading and mixing
mechanisms and the interaction between them, we analyze
two scenarios in d = 2 spatial dimensions, (i) a completely
isotropic scenario characterized by isotropic local disper-
sion and disorder correlation, and (ii) a scenario character-
ized by an isotropic correlation structure and anisotropic
local dispersion.

In the isotropic scenario, we distinguish three regimes,
(i) the intermediate time regime su � t� sD, (ii) the Kubo
time regime sD � t� sj and (iii) the long time regime
t� sj. In the intermediate regime, the plume size is still
smaller than a disorder correlation length. Thus spatial het-
erogeneity has not been activated as an effective spreading
mechanism. In the Kubo regime, the plume is larger than
the disorder correlation length, but smaller than the
Kubo-length. Thus, spatial heterogeneity is activated as a
macroscopic spreading mechanism, time fluctuations are
not. Only in the asymptotic regime, both spatial heteroge-
neity and temporal fluctuations are activated as effective
spreading mechanisms.

For the anisotropic scenario we consider a different
order of time scales, which implies (i) sj � t� sD2

and
(ii) t� sD2

. For sj � t� sD2
, we observe superdiffusive

behavior for the longitudinal effective dispersion coeffi-
cient. In this regime, transverse local dispersion is sublead-
ing and cannot smooth out the vertical concentration
contrasts induced by the interaction of transverse redistri-
bution of the solute by the temporal flow fluctuations
and spatial heterogeneity. As soon as the plume has spread
over more than one vertical correlation length by local
transverse dispersion for t > sD, longitudinal effective dis-
persion becomes normal.

The studied effective dispersion behavior and the anal-
ysis of the different micro and macroscopic spreading
mechanisms and the interaction between them sheds some
new light on the understanding of effective transport pro-
cesses in heterogeneous media. The observed increase of
transverse dispersion due to temporal flow fluctuations
can have important practical implications for the assess-
ment of groundwater remediation based on hydraulic
manipulation, as well as for the assessment and prediction
of the migration of reactive contaminants in the context of
performance assessment in nuclear waste management.
The developed compact and simple expressions for the
effective dispersion coefficients can be easily used for the
quantification of effective solute spreading and mixing in
such applications.
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Appendix A. Integral expressions

Here we present the explicit integral expressions for the
contributions to the effective transport velocity and the
effective dispersion coefficients due to the interaction
between temporal fluctuations of the flow conditions and
chemical heterogeneity.

We derive approximate expressions for small inverse Pec-
let numbers. In order to keep the derivations as transparent
as possible, the derived expressions are approximated suc-
cessively, which means that, in the course of the derivations,
we successively disregard subleading terms until we arrive at
the consistent final result that represents the leading behav-
ior in the limit of small inverse Peclet numbers.

Inserting expansion (28) for ~gðk; tÞ into ln½~gðk; tÞ� and
expanding the resulting expression up to first order in
r2

ll, we obtain

ln½~gðk; tÞ� ¼ g0ðk; tÞ þ r2
ll½I1ðk; tÞ þ I2ðk; tÞ� ðA:1Þ

and thus for the effective center of mass velocity (31) and
the effective dispersion coefficients (32),

ueff
i ðtÞ ¼ udi1 � r2

ll

d

dt
i

o

oki
hI1ðk; tÞi �

1

2
hI2ðk; tÞi

� �
k¼0

;

ðA:2Þ

Deff
ij ðtÞ ¼ Dij � r2

ll

1

2

d

dt
o

2

okiokj
hI1ðk; tÞi �

1

2
hI2ðk; tÞi

� �
k¼0

:

ðA:3Þ

The auxiliary functions I1ðk; tÞ and I2ðk; tÞ are defined by

I1ðk; tÞ ¼
1

~g0ðk; t; 0Þ

Z
k0

Z 1

�1
dt0
Z 1

�1
dt00Cllðk0Þ~g0ðk; t; t0Þ

� o

ot0
~g0ðk� k0; t0; t00Þ o

ot00
~g0ðk; t00; 0Þ; ðA:4Þ

I2ðk; tÞ ¼
1

~g0ðk; t; 0Þ2
Z

k0

Z 1

�1
dt0
Z 1

�1
dt00Cllðk0Þ~g0ðk; t; t0Þ

� o

ot0
~g0ðk� k0; t0; 0Þ~g0ðk; t; t00Þ

o

ot00
~g0ðkþ k0; t00; 0Þ;

ðA:5Þ
respectively. By partially integrating with respect to t0 and
t00, the internal time derivatives are shifted to the propaga-
tors that contain only external wave vectors k. Evaluating
the resulting time derivatives, we obtain for I1ðk; tÞ and
I2ðk; tÞ
I1ðk; tÞ ¼ I11ðk; tÞ þ I12ðk; tÞ þ I13ðk; tÞ þ � � � ;
I2ðk; tÞ ¼ I21ðk; tÞ þ 2I22ðk; tÞ þ � � � ;

ðA:6Þ

where the dots denote contributions which are small for
small inverse Peclet numbers and contributions that are
independent of k. The auxiliary functions contributing to
I1ðk; tÞ are defined by

I11ðk; tÞ ¼ �
Z

k0

Z t

0

dt0
Z t0

0

dt00k � uðt0Þk � uðt00ÞB1ðk0; t0; t00Þ;

ðA:7Þ
I12ðk; tÞ ¼
Z

k0

Z t

0

dt0ik � uðt0ÞB1ðk0; t0; 0Þ; ðA:8Þ

I13ðk; tÞ ¼
Z

k0

Z t

0

dt0ik � uðt0ÞB1ðk0; t; t0Þ; ðA:9Þ

where we defined

B1ðk0; t1; t2Þ ¼ ~Cllðk0Þ~c0ð�k0; t1 � t2Þ½hðk0; t1; t2Þ þ 1�
ðA:10Þ

with

hðk0; t1; t2Þ ¼ exp �iuk0
Z t1

t2

dymðyÞ
� �

� 1: ðA:11Þ

The auxiliary functions contributing to I2ðk; tÞ are given by

I21ðk; tÞ ¼ �
Z

k0

Z t

0

dt0
Z t

0

dt00k � uðt0Þk � uðt00ÞB2ðk0; t0; t00Þ;

ðA:12Þ

I22ðk; tÞ ¼
Z

k0

Z t

0

dt0ik � uðt0ÞB2ðk0; t; t0Þ; ðA:13Þ

where we defined

B2ðk0; t1; t2Þ ¼ ~Cllðk0Þ~c0ð�k0; t1Þ~c0ðk0; t2Þ½hðk0; t1; t2Þ þ 1�:
ðA:14Þ

Note that the contributions I11ðk; tÞ and I21ðk; tÞ are of sec-
ond order in k and contribute only to the effective disper-
sion coefficients, while I12ðk; tÞ and I22ðk; tÞ are linear in k
and thus contribute only to the effective center of mass
velocity.

The determination of the effective center of mass veloc-
ity and dispersion coefficients involves the following
averages:

hhðt1; t2Þi ¼ r2
mmAðk0; t1 � t2Þ þ � � � ; ðA:15Þ

hmlðt3Þhðt1; t2Þi ¼ r2
mmAlðk0; t1 � t2; t3 � t2Þ þ � � � ; ðA:16Þ

hmlðt3Þmmðt4Þhðt1; t2Þi ¼ r2
mmC

mm
lmðt3 � t4Þ þ � � � ; ðA:17Þ

where the dots denote contributions of the order of r4
mm. We

defined the auxiliary functions

Aðk0; tÞ ¼ � u2

2

Z t

0

dy
Z t

0

dy0k0lC
mm
lmðy � y 0Þk0m; ðA:18Þ

Alðk0; t1; t2Þ ¼ �iu
Z t1

0

dyCmm
lmðt2 � yÞk0m: ðA:19Þ

The average over hðt1; t2Þ can be performed exactly for a
Gaussian distributed m(t). This yields,

hhðt1; t2Þi ¼ exp �r2
mm

u2

2

Z t1

t2

dy
Z t1

t2

dy 0k0lC
mm
lmðy � y0Þk0m

� �
� 1:

ðA:20Þ

Note that (A.20) is always positive, while the first order
approximation of this expression in r2

mm can be nega-
tive. Expression (A.20) gives the sum of dllDeff

11 þ dlmDeff
11

and is always positive. The contribution (47) has been
obtained by the first-order expansion of (A.20) and is



V. Zavala-Sanchez et al. / Advances in Water Resources 30 (2007) 1342–1354 1353
strictly valid only for small variances at which
dllDeff

11 þ dlmDeff
11 P 0.

In fact, the first-order approximation of (A.20) leads to
unphysical negative values for the effective longitudinal dis-
persion coefficients for increasing variance.

Inserting (A.8), (A.9) and (A.13) into (A.2), expansion
up to second order in the temporal fluctuations and subse-
quent average over the temporal random fields, we obtain
for the effective center of mass velocity,

ueff
i ðtÞ ¼ udi1 þ dllueff

i ðtÞ þ dlmueff
i ðtÞ ðA:21Þ

with the contributions,

dllueff
i ðtÞ ¼ udi1r

2
ll

Z
k0

~Cllðk0Þ~c0ð�k0; tÞ þ � � � ; ðA:22Þ

dlmueff
i ðtÞ ¼ ur2

llr
2
mm

Z
k0

~Cllðk0Þ½di1Aðk0; tÞ

þ Aiðk0; t; 0Þ�~c0ð�k0; tÞ þ � � � ; ðA:23Þ

where again the dots denote contributions that are small
for small inverse Peclet numbers.

Correspondingly, we obtain for the effective dispersion
coefficients by inserting (A.7) and (A.12) into (A.3),

Deff
ij ðtÞ ¼ Dij þ dllDeff

ij ðtÞ þ dlmDeff
ij ðtÞ; ðA:24Þ

where we defined,

dllDeff
ij ðtÞ ¼ u2r2

lldi1dj1

Z
k0

Z t

0

dt0 ~Cllðk0Þ~c0ð�k0; t0Þ

� ½1� ~c0ðk0; tÞ�; ðA:25Þ

dlmDeff
ij ðtÞ ¼ u2r2

llr
2
mm

Z
k0

Z t

0

dt0 ~Cllðk0Þ½di1dj1Aðk0; t0Þ

þ dj1Aiðk0; t0; 0Þ þ di1Ajðk0; t0; 0Þ þ Cmm
ij ðt0Þ�

� ½~c0ð�k0; t0Þ � ~c0ð�k0; tÞ~c0ðk0; t � t0Þ�: ðA:26Þ

We obtain the leading behavior of dlmueff
i ðtÞ and dlmDeff

ij ðtÞ
for small inverse Peclet numbers, (38) and (39) by inserting
the expansions

~c0ð�k0; t0Þ ¼ expð�k0j
2l2

j �jt0=su � ik01l1t0=suÞ
¼ expð�ik01l1t0=suÞ þ � � � ðA:27Þ

and

~c0ð�k0; tÞ~c0ðk0; t � t0Þ ¼ expð�2k0j
2l2

j t=sDjÞ~c0ðk0;�t0Þ

¼ expð�2k00j
2l2

j t=sDj � ik01l1t0=suÞ þ � � � ;
ðA:28Þ

into (A.23) and (A.26). The dots denote subleading contri-
butions of the order of the inverse Peclet numbers.
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