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Abstract

We present expressions satisfied by the first statistical moments (mean and variance–covariance) of travel time and trajectory

of conservative solute particles advected in a three-dimensional heterogeneous aquifer under uniform in the mean flow condi-

tions. Closure of the model is obtained by means of a consistent second-order expansion in rY (standard deviation of the log hydrau-
lic conductivity) of (statistical) moments of quantities of interest. As such, the results obtained are nominally limited to mildly

non-uniform fields, with rY < 1. Resulting mean and variance of particles travel time and trajectory are functions of first and

second moments and cross-moments of trajectory and velocity components. Our solution is applicable to infinite domains and is

free of distributional assumptions. As an important application of the methodology we obtain closed-form expressions for the

unconditional mean and variance of travel time and particle trajectory for isotropic log-conductivity domain characterized by an

exponential variogram. This allows us to recover the non linear behavior of mean travel time versus distance, in agreement with

numerical results published in the literature, as well as a non-linear effect in the mean trajectory. The analysis of trajectory variance

allows recovering some known results regarding transverse macro-dispersion, evidencing some limitations typical of perturbation

theory.

� 2005 Elsevier Ltd. All rights reserved.

Keywords: Heterogeneous media; Travel time; Particle trajectory; Stochastic analysis; Three-dimensional media
1. Introduction

While the physics of groundwater flow and solute

transport are known and describable by relatively simple

equations, the parameters involved in such equations are
extremely variable in space. Thus, the prediction of sol-

ute movement in groundwater is highly uncertain. The

field of stochastic hydrogeology abandons the idea (typ-

ical of deterministic models) of calculating actual flow
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and transport state variables (hydraulic heads, flow

rates, travel times, trajectories,. . .) and is oriented to-

ward rendering ensemble moments of such quantities.

Most of the studies in stochastic hydrogeology have

been devoted to find low-order moments. First-order
moments constitute unbiased predictors of the variables

under study. Second-order moments (variances–covari-

ances) can be interpreted as measures of predictive

uncertainty.

There are two main categories of approaches aiming

at evaluating the (ensemble) moments of solute trajecto-

ries and travel times in random media. The first one

aims at obtaining the statistics of particle location at a
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(deterministically) given time, t. The second, which we

pursue in this work, allows computing the travel time

statistics for a particle starting from a given point in

space and reaching a given discharge location. In this

second approach both the travel time and the particle

trajectory are viewed as random variables [5,8].
A summary of the main results available in the liter-

ature for the statistical moments of solute travel time

and/or trajectory can be found in [15,16]. In these works

the authors derived a fully non-linear suite of expres-

sions to calculate mean and variance of travel time

and trajectory of a conservative solute in two dimen-

sional bounded domains under non-uniform mean flow

conditions. In this Technical Note we provide an exten-
sion of this work to the three dimensional case, focusing

on uniform in the mean flow conditions in unbounded

domains. This simplified flow regime allows us present-

ing closed-form expressions for the mean and variance

of travel time and the variance of transverse particle

location. The resulting moments are checked against

numerical simulations and to the body of analytical

solutions already available in the literature.
2. Ensemble moments of solute travel time

We consider steady-state groundwater in a randomly

heterogeneous aquifer. At the local scale the velocity,

V(x) at vector location x(x,y,z), is related to hydraulic

conductivity, K(x) (considered a scalar at the local
scale), and hydraulic head, h(x) through Darcy�s law:

VðxÞ ¼ qðxÞ
n

¼ �KðxÞ
n

rhðxÞ ð1Þ

where q(x) is the specific flux and n is the effective poros-

ity, here taken as constant. The trajectory of a conserva-

tive solute in three-dimensional domains is rendered by

the kinematic equation:

dx ¼ ðdx; dy; dzÞ
¼ ðV xðx; y; zÞdt; V yðx; y; zÞdt; V zðx; y; zÞdtÞ
¼ VðxÞdt ð2Þ

Here we only consider the advective component of
transport and disregard local dispersion. Therefore, all

particles injected at a given point within a steady-state

flow field follow the same trajectory.

The solution of the coupled system given by (2) ren-

ders the position reached at time t by the particle origi-

nated from location x = x0 at time t = t0 and is given in

parametric form by

x ¼ xðt; t0Þ; y ¼ yðt; t0Þ; z ¼ zðt; t0Þ ð3Þ

From this point on we will assume that the x-coordinate

is oriented along the mean flow direction, while y and z

are two orthogonal coordinates, transverse to x. Upon
obtaining t as a function of x from the first of (3),

with the assumption that x = x(t, t0) is invertible, and

substituting it into the remaining two equations, we

are in a position to write the explicit equation for the

trajectory:

y ¼ gðx; x0Þ
z ¼ fðx; x0Þ

�
ð4Þ

Combining (4) and (2) we can write a differential

equation for the projection of the trajectory along the

x-coordinate in terms of the Lagrangian velocity,
Vx(x,g(x,x0),f(x,x0)) (in short Vx(x,g,f)), leading to

dt ¼ dx
V xðx; g; fÞ

ð5Þ

The time required for a particle injected (at t = t0 = 0)
at x = x0 and traveling along the trajectory to reach a

point with coordinate X1 (which is the definition of res-

idence or travel time) can be expressed upon integration

of (5):

tðX 1; x0Þ ¼
Z X 1

x0

1

V xðx; g; fÞ
dx ð6Þ

Note that, while we are fixing x = X1, in general

g(X1,x0) and f(X1,x0) would be undetermined (random).

Next, we make use of Reynolds� decomposition and

write the travel time as a sum of its (ensemble) mean,

hti, and a zero-mean fluctuation, t 0, i.e., t = hti + t 0, to
obtain the following expression for the mean travel time:

htðX 1; x0Þi ¼
Z X 1

x0

1

V xðx; g; fÞ

� �
dx ð7Þ

Following a procedure similar to [16] the travel time

variance, r2
t , is given by

r2
t ðX 1; x0Þ ¼ h½t0ðX 1; x0Þ
2i

¼
Z X 1

x0

1

V xðx; g; fÞ
� 1

V xðx; g; fÞ

� �� �
dx

� �2* +

ð8Þ
Eqs. (7) and (8) are expressed in terms of (the hetero-

geneous functions) h1/Vxi and 1/Vx, evaluated along the

(random) particle trajectory. They offer the mean and

variance of travel time that an ideal solute particle re-

leased at x0 takes to reach a given coordinate X1, corre-

sponding to (generally random) coordinates Y1 and Z1

(some exceptions would be, e.g., the case of flow to a sin-

gle point, where Y1 and Z1 are deterministically known,
or to a vertical draining well of negligible radius, where

Y1 is deterministic while Z1 is random).

To render these expressions workable we applied

Reynolds� decomposition to velocity Vx and particle

transverse displacements, g = g(x,x0) and f = f(x,x0),
and write them as the sum of their ensemble means,
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hVxi, hgi, and hfi, and zero-mean fluctuations, V 0
x, g

0, f 0,

respectively. This leads to

1

V xðx; g; fÞ
¼ 1

hV xðx; g; fÞi þ V 0
xðx; g; fÞ

¼ 1

hV xðx; g; fÞi
1þ V 0

xðx; g; fÞ
hV xðx; g; fÞi

� ��1
ð9Þ

Expanding the second factor of (9) in power series,

with the assumption that jV 0
xðx; g; fÞj=jhV xðx; g; fÞij < 1,

and disregarding terms with powers of fluctuations lar-

ger than 2, yields

1

V xðx;g; fÞ
 1

hV xðx;g; fÞi
1� V 0

xðx;g; fÞ
hV xðx;g; fÞi

þ V 02
x ðx;g; fÞ

hV xðx;g; fÞi2

" #

ð10Þ

Expanding Vx(x,g,f) around its mean trajectory,
½hgi ¼ g; hfi ¼ fÞ
, in Taylor�s series and disregarding

terms with powers of fluctuations larger than two leads

to the following expression for the component of veloc-

ity fluctuation along x-direction (see Appendix A for de-

tails about the derivation):

V 0
xðx; g; fÞ  V 0

xðx; g; fÞ þ g0D0
1gxðxÞ þ f0D0

1fxðxÞ
� hg0D0

1gxðxÞi � hf0D0
1fxðxÞi ð11Þ

where D0
1nxðxÞ ¼

oV 0
xðx;g;fÞ
on jg;f ðn ¼ g; fÞ; hg0D0

1gxðxÞi is the

cross-covariance between the transverse displacement

evaluated at point x and the transverse derivative of

Vx, evaluated at x along the mean trajectory [g; f];
and, finally, hf0D0

1fxðxÞi is the cross-covariance between

the vertical displacement evaluated at point x and the

vertical derivative of Vx, evaluated at x along the mean
trajectory [g; f].

On the other hand, from (11) and dropping higher

order terms

V 02
x ðx; g; fÞ  V 02

x ðx; g; fÞ ð12Þ
From (10)–(12), the results presented in Appendix A,

and after some expansions, we can write the final expres-

sion for the inverse of velocity:

1

V xðx; g; fÞ
 1

hV xðx; g; fÞi
½1� N 1ðxÞ þ N 2ðxÞ
 ð13Þ

where

N 1ðxÞ ¼
V 0

xðx; g; fÞ þ g0D0
1gxðxÞ þ f0D0

1fxðxÞ
hV xðx; g; fÞi

N 2ðxÞ ¼
V 02

x ðx; g; fÞ
hV xðx; g; fÞi2

ð14Þ

Substituting (13) into (6) and disregarding powers of

fluctuations larger than 2 leads to an expression for

the (random) travel time. Finally, ensemble averaging

yields the following expression for the mean travel time:
htðX 1; x0Þi ¼
Z X 1

x0

1

hV xðx; g; fÞi
1�

hg0D0
1gxðxÞi

hV xðx; g; fÞi

"

�
hf0D0

1fxðxÞi
hV xðx; g; fÞi

þ hV 02
x ðx; g; fÞi

hV xðx; g; fÞi2

#
dx ð15Þ

where hV 02
x ðx; g; fÞi is the variance of the velocity Vx,

evaluated at x along the mean trajectory, ½gðx; x0Þ;
fðx; x0Þ
, of a tracer particle released at x0.

We are now in the position to write the expression of

the travel time variance for a particle injected at a loca-

tion of abscissa x0 and ending at a point with abscissa

X1. After some manipulations and disregarding mo-

ments of third-order (and higher), we obtain

r2
t ðX 1;x0Þ ¼

Z X I

x0

Z X I

x0

CV xðx;g; f; x�;g�; f
�Þ

hV xðx;g; fÞi2hV xðx�;g�; f
�Þi2

dxdx�

ð16Þ
3. Ensemble moments of particles trajectory

From (2) and (4) the trajectory of a fluid particle in a

three-dimensional steady-state flow is the solution of the

following set of stochastic differential equations:

dg
dx

¼ V yðx; g; fÞ
V xðx; g; fÞ

;
df
dx

¼ V zðx; g; fÞ
V xðx; g; fÞ

ð17Þ

Eq. (17) render the transverse displacements at the
generic abscissa x of the particle passing through the

point x0 � (x0,y0,z0). Taking expectation of (17) leads

to the following differential equations for the mean

trajectory

dhgi
dx

¼ V yðx; g; fÞ
V xðx; g; fÞ

� �
;

dhfi
dx

¼ V zðx; g; fÞ
V xðx; g; fÞ

� �
; ð18aÞ

subject to the boundary condition

hgðx; x0Þ; fðx; x0Þi ¼ hy0; z0i; x � x0; ð18bÞ
One should note that in some cases y0 and z0 are

deterministically known and therefore hy0i = y0 and

hz0i = z0. The general expression for the ratio between

the velocity components is developed in Appendix D

at second-order (in powers of fluctuations). Identifying

j = y in (D.4) and taking expectations, we can write

the second-order approximation of the equation satis-
fied by the particle mean transverse displacement,

hg(x,x0)i, being

dhgðx; x0i
dx

¼
hg0D0

1gyi þ hf0D0
1fyi

hV xðx; g; fÞi
ð19Þ

where D0
1ny ¼

oV 0
y ðx;g;fÞ
on jg;f ðn ¼ g; fÞ. The equation satis-

fied by dhfi
dx is formally similar to the right-hand side of

(19), just replacing V 0
yðx; g; fÞ by V 0

zðx; g; fÞ.
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Next, we develop an expression for the variance–

covariance of the particle trajectory. First, we multiply

(17) by the fluctuations of the trajectory at the abscissa

x*, g*
0
= g 0(x*,x0), and f*

0
= f 0(x*,x0), respectively. We

then take expectation and obtain the following set of

equations:

g�0 dg
dx

� �
¼ g�0 V yðx; g; fÞ

V xðx; g; fÞ

� �

f�0
dg
dx

� �
¼ f�0

V yðx; g; fÞ
V xðx; g; fÞ

� �

g�0 df
dx

� �
¼ g�0 V zðx; g; fÞ

V xðx; g; fÞ

� �

f�0
df
dx

� �
¼ f�0

V zðx; g; fÞ
V xðx; g; fÞ

� �
ð20Þ

Writing the trajectory components as the sum of their

ensemble mean and fluctuation and noting that g* 0 and

f* 0 do not depend on x, the equations satisfied by the tra-

jectory covariances, Cgg(x,x*,x0) = hg 0(x,x0)g 0(x*,x0)i,
Cff(x,x*,x0) = hf 0(x,x0)f 0(x*,x0)i, and Cgf(x,x*,x0) =

Cfg(x,x*,x0) = hg 0(x,x0)f 0(x*,x0)i, are as follows:

dCggðx; x�; x0Þ
dx

¼ g�0 V yðx; g; fÞ
V xðx; g; fÞ

� �

dCgfðx; x�; x0Þ
dx

¼ g�0 V zðx; g; fÞ
V xðx; g; fÞ

� �

dCfgðx; x�; x0Þ
dx

¼ f�0
V yðx; g; fÞ
V xðx; g; fÞ

� �

dCffðx; x�; x0Þ
dx

¼ f�0
V zðx; g; fÞ
V xðx; g; fÞ

� �
ð21Þ

with the set of boundary conditions

Cggðx; x�;x0Þ ¼ hy00g0ðx�; x0Þi ¼ C0
gg

Cgfðx; x�; x0Þ ¼ hy00f
0ðx�; x0Þi ¼ C0

gf

Cfgðx; x�; x0Þ ¼ hz00g0ðx�; x0Þi ¼ C0
fg

Cffðx; x�; x0Þ ¼ hz00f
0ðx�; x0Þi ¼ C0

ff

; x � x0 ð22Þ

If the initial location is deterministically known, then

y 00 ¼ z00 ¼ 0, and thus C0
gg ¼ C0

gf ¼ C0
fg ¼ C0

ff ¼ 0.

The next step is to derive analytical expressions for

the equations in (21). Discarding terms of third and

higher order from (21 top left) and (D.4), we can write,

after some manipulations:

dCggðx; x�; x0Þ
dx

¼
CgV y ðx�; x; x0Þ
hV xðx; g; fÞi

ð23Þ

where CgV y ðx�; x; x0Þ ¼ hg�0V 0
yðx; g; fÞ is the cross-covari-

ance between g* and V yðx; g; fÞ.
Similarly, the equations satisfied by Cgf(x,x*,x0),

Cfg(x,x*,x0), and Cff(x,x*,x0) are

dCgfðx; x�; x0Þ
dx

¼
CfV y ðx�; x; x0Þ
hV xðx; g; fÞi

ð24Þ

dCfgðx; x�; x0Þ
dx

¼ CgV zðx�; x; x0Þ
hV xðx; g; fÞi

ð25Þ

dCffðx; x�; x0Þ
dx

¼ CfV zðx�; x; x0Þ
hV xðx; g; fÞi

ð26Þ

with CfV jðx�; x; x0Þ ¼ hf�0V 0
jðx; g; fÞi (j = x,y,z). The cor-

responding trajectory variances are obtained from the
covariances by taking the limit for x*! x.

These relationships allow predicting the trajectory of

a particle starting from a given injection point and

reaching a given location of interest, characterized by

the abscissa (x = X1) and (generally random) transverse

coordinates (y = Y1, z = Z1). They also yield a measure

of the uncertainty associated to such a predictor.
4. Discussion and relevance to previous work

The suite of expressions presented allows obtaining
the statistics of travel time and trajectory by evaluating

simple or double integrals. One should note that up to

this point we have not introduced any restriction on

the distributional assumptions of the various quantities

involved (in particular, the equations are not restricted

to multi-Gaussian log conductivity fields). This is so be-

cause they essentially rely on (cross-)moments of veloc-

ity which can be easily computed via an extension to
three-dimensional space of the method proposed by

[13,14,17]. Moreover, our approach can be completely

integrated with the composite medium approach which

allows assessing validity of perturbation approximations

when dealing with highly heterogeneous material distri-

butions [24,25]. It is also compatible with models treat-

ing aquifers as multi-modal heterogeneous formations

[18].
In this section we review some of the results that can

be found in the literature, while in the next one we par-

ticularize the problem to the case of a multi-log Gauss-

ian distribution of Y = lnK, with a given variogram,

where analytical closed-form solutions can be obtained.

Finding the moments of travel time and/or particle

trajectory in a three dimensional heterogeneous medium

has been the subject of the work by several authors. In
almost all cases moments are computed for given prede-

fined mean flow conditions. The statistical moments of

solute travel time in an infinite domain under uniform

mean flow were initially studied by [23] and then ex-

tended by [5,10]. The simplifying hypothesis used by

these authors is to substitute the actual velocity at a
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given point by its projection along the mean trajectory.

A direct application of small perturbations for this

problem leads to mean travel time becoming linear with

travel distance. Numerical simulations in two-dimen-

sions carried out by [6] show that there is a correction

term close to the source that leads to a non-linear effect.
In order to tackle this non-linearity at short distances,

these authors provide an empirical relationship for the

transition from near the source to far from the source

behaviors. It was then shown [11] that the empirical

expression proposed by [6] predicts the mean arrival

time in three-dimensional simulations as well when par-

ticles are injected evenly in space. When, contrariwise,

particles� injection is proportional to flow, mean travel
time becomes linear with distance.

The impact of a finite flow domain size on solute tra-

vel time statistics for a non-reactive solute in a three-

dimensional statistically isotropic porous medium under

uniform mean flow conditions has been analyzed by [4]

within a first-order framework.

The only works we are aware in which the authors do

not project the velocity along the mean trajectory are
those of [21] and [26]. In [21], the author provides an

integral solution for the mean travel time as a function

of distance in a three dimensional isotropic domain,

under mean uniform flow conditions and for multi-

Gaussian log-conductivity fields. The solution includes

an integral of the velocity covariance term, obtained

from a Taylor�s expansion of the velocity along the

mean trajectory. While [26] provides a solution of the
travel time variance that formally coincides with our

(16), their expression for mean travel time contains only

the first term of our (15), since in their expansion for the

velocity they drop second-order terms (see also Appen-

dix A for a comment on this point).

With regard to the analysis of trajectories in heteroge-

neous media, Dagan [7–9] considers a mean uniform flow

in an infinite domain of stationary log-conductivity and
notes that the trajectory has a normal probability density

function (pdf) distribution. For this flow configuration

Dagan [7,9] derived closed-form expressions for longitu-

dinal and transverse displacement variance within the

classical Lagrangian framework relying upon spectral

techniques for representation of velocity (cross-)mo-

ments. The assumption of stationarity is basic to the

spectral analysis of random flows [3,12], since, in general,
it is required for Fourier representation of random fields,

such as hydraulic conductivity and hydraulic head. Fur-

thermore, since the presence of boundary conditions ren-

ders hydraulic head statistically inhomogeneous, the

spectral approach is strictly limited to infinite domains

and homogeneous initial conditions. This limitation

can be relaxed in some special cases by employing the

so-called local stationarity hypothesis [19].
Comparison between the expression of the mean tra-

jectory as obtained by [26] and our solution (19) evi-
dences that both coincide at first-order. The obvious

result is that the mean trajectory of a particle starting

from (x0,y0,z0), is always (x,y0,z0). If, at a given time,

the particle is (randomly) located at (y,z)5 (y0,z0), it

will eventually tend to revert (in the mean) towards

(y,z) = (y0,z0). This important feature cannot be
grasped by a first-order analysis, while is highlighted

by our Eq. (19).
5. Closed-form solution for multi-Gaussian log-k field

with isotropic exponential variogram

In this section we present a direct application of our
procedure. This will be used to check the validity of the

approach by recovering some results from the literature

and to present some new, closed-form, analytical

solutions.

We consider mean uniform flow within an infinite sta-

tionary field with simple exponential variogram of the

natural logarithm of hydraulic conductivity, Y = lnK,

with integral scale I. Without losing generality we con-
sider injection at x0 = 0, while the discharge surface is

a plane located perpendicular to the mean flow direction

(x), and located at X1 = L. Changing the notation and

setting U = hVxi (a constant value under such flow con-

ditions), we can write (15) as:

htðLÞi ¼
Z L

0

1

U
1�

hg0D0
1gxðxÞi
U

�
hf0D0

1fxðxÞi
U

þ hV 02
x i

U 2

� �
dx

ð27Þ

In a three dimensional infinite isotropic medium the
mean velocity, U, is given by [9]

U ¼ KG expðr2
Y =6ÞJ

n
ð28Þ

KG being the geometric mean of hydraulic conductiv-

ity, and J the mean gradient. The expression for the

velocity variance, hV 02
x i, that appears in (27) is con-

stant throughout the aquifer and can be obtained

from [22]. Expressions for the cross-moments between

trajectory fluctuations and derivatives of velocities

appearing in (27) are obtained on the basis of the

expressions of velocity cross-covariances provided by
[22].

After performing the corresponding integration, (27)

becomes (up to second-order in rY):

htðLÞi ¼ 1

U
Lþ r2

Y I 1þ 24

L41
ð1� expð�L1ÞÞ

��

� 24

L31
expð�L1Þ �

8

L21
expð�L1Þ �

4

L21

��
ð29Þ

with L1 ¼ L
I . Fig. 1 depicts the dependence of mean travel

time on distance for different values of r2
Y . The following
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Y (from Eq. 29).
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expression for the mean travel time is obtained at the

limit L ! 0:

htðLÞi ¼ L
U

1þ 8

15
r2
Y

� �
¼ L

U
1þ hV 02

x i
U 2

� �
ð30Þ

Therefore, for short distances hti = L/UH, as it can be

shown that up to a second-order expansion in rY,
1

UH
¼ h1V i ¼ h 1

UþV 0ðx;y;zÞi ¼ 1
U ½1þ

hV 02
x i

U2 
. On the other hand,

at the limit L ! 1 we obtain

htðLÞi ¼ 1

U
½Lþ r2

Y I 
 ð31Þ

where the leading term is inversely proportional to the

arithmetic mean of velocity. Previous results in the liter-

ature [6,10,11] obtained the leading term in (31), but not

the offset term, which includes the effect of heterogeneity

at large distance. There is a clear physical explanation for

this behavior. At short distances travel time is inversely

proportional to local velocity at the injection point.
Therefore, the expected value is proportional to the in-

verse of the harmonic mean of velocity. On the other

hand, for large distances the particles locations are not

correlated with the velocity at the initial location. Thus,

particles tend to find the fastest paths and transport is

speeded. This effect is more important as the degree of

heterogeneity increases. We emphasize that the closed-

form expression (29) describing the nonlinear depen-
dence of mean travel time on distance is an original result

which cannot be obtained on the basis of a first-order

formalism of the kind proposed by [1] and [26], where

only a linear dependence on distance can be recovered.

Now we analyze the variance of travel time. From

(16), we can write

r2
t ðL; x0Þ ¼

Z L

x0

Z L

x0

hV 0
xðx; 0; 0ÞV 0

xðx�; 0; 0Þi
hV xðx; 0; 0Þi2hV xðx�; 0; 0Þi2

dxdx�

¼ 1

U 4

Z L

x0

Z L

x0

CV X ðx� x�; 0; 0Þdxdx� ð32Þ
which is the format already provided by [5] (their equa-

tion 15). Performing the integration leads to

r2
t ðL; x0Þ ¼

r2
Y I

2

U 2
2L1 �

16

3
� 16

L31
ð1� expð�L1ÞÞ

�

þ 16

L21
expð�L1Þ þ

8

L1

�
ð33Þ

with the corresponding limits

r2
t ðL; x0Þ ¼

r2
Y I

U 2
2L� 16I

3

� �
for L ! 1 ð34Þ

r2
t ðL; x0Þ ¼

8L2

15U 2
r2
Y for L ! 0 ð35Þ

Expression (35) and the leading term in (34) were al-

ready found by [23].

As an important application, we note that solute flux

statistics (mean and variance) can be expressed in terms

of the probability density functions of particle travel

time and transverse displacement [1]. Thus, contemplat-

ing the effect of the nonlinear dependence evidenced by

(29) and making use of the closed-form solution (33) for
travel time variance could be employed within the con-

text of the work of [1] to lead to a higher order correc-

tion of solute flux moments.

In Fig. 2 we plot travel time variance as a function of

travel distance. After a travel distance of 15 integral

scales, the error induced by using the asymptotic value

(34) rather than the actual value (33) is less than 2%.

On the other hand, disregarding the offset term in (34)
would entail an error close to 18% for the same travel

distance (the relative error would also decrease with tra-

vel distance, but it would need over 130 integral scales to

get down to 2%).

With reference to the trajectory moments, under uni-

form mean flow conditions in an infinite domain, equa-

tion (19) leads to the obvious result hg(x,x0)i = y0,
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hf(x,x0)i = z0, when at a given time a certain particle lies

on the mean trajectory. Otherwise, if at some given time

the particle has left the mean trajectory, there is a com-

ponent in (19) which would force the particle to revert

(in the mean) to (y0,z0).

The equations for the variance–covariance of the tra-

jectory (four terms) are the following:

dCggðx; x�; x0Þ
dx

¼ 1

U
CgV y ðx�; x; x0Þ ð36Þ

where

CgV y ðx�; x; x0Þ ¼ hg�0V 0
yðx1; g; fÞi

¼ 1

U

Z x

0

hV 0
yðx1; gðx1Þ; fðx1ÞÞ

� V 0
yðx; gðxÞ; fðxÞÞidx1 ð37Þ

Thus

Cggðx�; x; x0Þ ¼
1

U 2

Z x

0

Z x�

0

hV 0
yðx1; gðx1Þ; fðx1ÞÞ

� V 0
yðx2; gðx2Þ; fðx2ÞÞidx1 dx2 ð38Þ

and

r2
ggðx; x0Þ ¼

1

U 2

Z x

0

Z x

0

hV 0
yðx1; gðx1Þ; fðx1ÞÞ

� V 0
yðx2; gðx2Þ; fðx2ÞÞidx1 dx2 ð39Þ

where gðx1Þ � gðx2Þ and fðx1Þ � fðx2Þ. Integration of

(39) leads to

r2
ggðL;x0Þ¼ 2r2

Y I
2 1

3
� 1

L1
þ 4

L31
� expð�L1Þ

4

L31
þ 4

L21
þ 1

L1

� �� �
ð40Þ

which is equal to (4.6.15) of [9], obtained by means of

spectral analysis. Limiting values are recovered as

r2
ggðL; x0Þ ¼

1

15
r2
Y L

2 for L ! 0 ð41Þ
r2
ggðL; x0Þ ¼

2

3
r2
Y I

2 for L ! 1 ð42Þ

Fig. 3 is a plot of the variance of the transverse com-

ponent of the trajectory. Notice that, while it reaches a

plateau for large travel distance, the particle needs to

travel over 60 integral scales to reach 95% of this limit-

ing value. Fig. 4 depicts the derivative of the variance of

transverse particle displacement with respect to distance.

This value is usually related to the concept of macrodi-

spersion [9]. The limiting values for the derivative of the
transverse component are zero for both L ! 0 and

L ! 1, thus suggesting that transverse dispersion in

three-dimensions tends to vanish for large travel dis-

tances. However, one should be aware that this specific

result suffers from limitations typical of the perturbation

theory used. As was first suggested by Neuman and

Zhang [20,27] and recently demonstrated analytically
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[2], higher order contributions do not cancel out, yield-

ing finite transverse macrodispersion coefficients in three

dimensions.

The cross-variance Cgf(x,x*,x0) = Cfg (x,x*,x0) is

then given by

Cgfðx�; x; x0Þ ¼
1

U 2

Z x

0

Z x�

0

hV 0
zðx1; gðx1Þ; fðx1ÞÞ

� V 0
yðx2; gðx2Þ; fðx2ÞÞidx1 dx2 ð43Þ

From [22] the cross-covariance of transversal velocities

is 0 along any given line, so Cgf(x*,x,x0) = 0. Finally,

for isotropic correlation Cff(x,x*,x0) = Cgg(x,x*,x0).
6. Conclusions

Our work leads to the following major conclusions.

1. We have presented second-order expressions for the

predictor of travel time and trajectory of conservative

solute particles advected in randomly heterogeneous

three-dimensional infinite aquifers under uniform in

the mean flow conditions. These are complemented

by expressions yielding the associated prediction
errors. Our solutions rely on a methodology which

is free of distributional assumptions, and thus appli-

cable to either Gaussian or non-Gaussian log hydrau-

lic conductivity fields.

2. Direct application of the resulting expressions to a

multi-Gaussian log hydraulic conductivity field with

an exponential isotropic variogram allows recovering

some results obtained in the literature and to present
some new closed-form analytical solutions. In partic-

ular, it is possible to recover the non-linear depen-

dence of the mean travel time on distance that has

been observed in numerical simulations. Mean travel

time is inversely proportional to the harmonic mean

of velocity for short travel distances. For very large

travel distances, mean travel time is given by the

sum of (a) a term which increases with travel distance
and is proportional to the inverse of the arithmetic

mean of velocity, and (b) a constant term (offset)

which is a function of the parameters characterizing

the heterogeneity.

3. A closed-form expression for the travel time variance

is also presented. The expression recovers the limiting

value for short travel distances already available in

the literature, and provides an additional constant
term to the linear limiting value published previously.

The closed-form solutions provided for travel time

moments could be used to obtain higher order

approximations to the solute flux approach method-

ology developed by [1].

4. The equations satisfied by the mean and covariance

of particle trajectories are presented. The former
allows us to highlight a non-linear feature of the

mean trajectory conditioned to the initial position

of the particle. Regarding the latter, when applied

to the particular case of a multi-Gaussian log-con-

ductivity field, the resulting expressions agree with

those already available in the literature. When inter-
preting the large scale behavior of second-order tra-

jectory moment and attempting to link it to the

concept of transverse macro-dispersion coefficients,

one should be aware that this specific result suffers

from limitations typical of the perturbation theory.
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Appendix A. Ensemble mean and fluctuation of the

velocity components

We decompose the j component of the velocity,

Vj(x,g,f), as a sum of its ensemble mean and a zero-

mean fluctuation

V jðx; g; fÞ ¼ hV jðx; g; fÞi þ V 0
jðx; g; fÞ

with hV 0
jðx; g; fÞi ¼ 0 ðA:1Þ

Expanding Vj(x,g,f) in a Taylor series around the

mean trajectory, ½g; f
, and disregarding the terms with

power of trajectory fluctuations larger than 2, yields

V jðx; g; fÞ ffi V jðx; g; fÞ þ g0 oV jðx; g; fÞ
og

g¼g

f¼f

þ f0
oV jðx; g; fÞ

of

g¼g

f¼f

þ g02

2

o2V jðx; g; fÞ
og2

g¼g

f¼f

þ f02

2

o2V jðx; g; fÞ
of2

g¼g

f¼f

þ g0f0
o2V jðx; g; fÞ

ogof

g¼g

f¼f

ðA:2Þ

Combining (A.1) and (A.2), disregarding terms with

powers of velocity and trajectory fluctuations larger

than 2, and setting for brevity of notation jg;f instead

of jg¼g

f¼f

, we obtain:
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V jðx; g; fÞ ffi hV jðx; g; fÞi þ V 0
jðx; g; fÞ

þ g0 ohV jðx; g; fÞi
og


g;f

þ
oV 0

jðx; g; fÞ
og


g;f

" #

þ f0
ohV jðx; g; fÞi

of


g;f

þ
oV 0

jðx; g; fÞ
of


g;f

" #

þ g02

2

o
2hV jðx; g; fÞi

og2


g;f

þ f02

2

o
2hV jðx; g; fÞi

of2


g;f

þ g0f0
o
2hV jðx; g; fÞi

ogof


g;f

ðA:3Þ

It is important to notice that our (A.3) includes terms

of higher order when compared to Eq. (8) of [26]. This is
crucial to capture the non-linear behavior of mean travel

time, as demonstrated in Section 5. Under mean uni-

form flow (A.3) reduces to:

V jðx; g; fÞ ffi hV jðx; g; fÞi þ V 0
jðx; g; fÞ

þ g0oV
0
jðx; g; fÞ
og


g;f

þ f0
oV 0

jðx; g; fÞ
of


g;f

ðA:4Þ

Taking ensemble average of (A.3), the second-order

approximation of the j component of the mean Lagrang-

ian velocity is given by

hV jðx; g; fÞi ffi hV jðx; g; fÞi þ hg0D0
1gjðxÞi

þ hf0D0
1fjðxÞi þ

hg02i
2

D2gjðxÞ

þ hf02i
2

D2fjðxÞ þ hg0f0iD2gfjðxÞ ðA:5Þ

with

D0
1njðxÞ ¼

oV 0
jðx; g; fÞ
on


g;f

ðn ¼ g; fÞ ðA:6Þ

and

D2njðxÞ ¼
o2hV jðx; g; fÞi

on2


g;f

; ðn ¼ g; fÞ ðA:7Þ

D2gfjðxÞ ¼
o
2hV jðx; g; fÞi

ogof


g;f

ðA:8Þ

In the case of uniform flow in the mean, (A.5) reduces

to:

hV jðx; g; fÞi ffi hV jðx; g; fÞi þ hg0D0
1gjðxÞi þ hf0D0

1fjðxÞi
ðA:9Þ

Substituting (A.3) and (A.5) into (A.1) yields the fluc-

tuation component, V 0
jðx; g; fÞ:
V 0
jðx; g; fÞ ffi V 0

jðx; g; fÞ þ g0½D1gjðxÞ þ D0
1gjðxÞ


þ f0½D1fjðxÞ þ D0
1fjðxÞ
 þ

D2gjðxÞ
2

�ðg02 � hg02iÞ þ D2fjðxÞ
2

ðf02 � hf02iÞ

þ D2gfjðxÞðg0f0 � hg0f0iÞ
� hg0D0

1gjðxÞi � hf0D0
1fjðxÞi ðA:10Þ

which, in the case of mean uniform flow, reduces to (11).
Appendix B. Velocity and trajectory cross-moments

In this Appendix we derive the equations satisfied

by the cross-moment between the trajectory and the j-

component of the velocity (with j = x,y,z), i.e.

hV 0
jðx�;g�;f

�Þg0i and hV 0
jðx�; g�; f

�Þf0i, where V jðx�;g�;f
�Þ

is the j-component of the velocity evaluated along the

mean trajectory at the abscissa x*. Knowledge of these

cross-moments is needed to compute the mean and var-

iance of travel time and trajectory. Multiplying the first

of (17) by the random velocity fluctuation V 0
jðx�; g�; f

�Þ
and taking ensemble average, yields:

V 0
jðx�; g�; f

�Þ dg
dx

� �
¼ V 0

jðx�; g�; f
�Þ V yðx; g; fÞ
V xðx; g; fÞ

� �
ðB:1Þ

Since V 0
jðx�; g�; f

�Þ is independent from the abscissa x,
the cross covariance, CgV jðx; x�; x0Þ ¼ hg0V 0

jðx�; g�; f
�Þi,

between the transverse component of trajectory evalu-

ated at the abscissa x and the j-component of the veloc-

ity evaluated at the abscissa x* along the mean

trajectory, satisfies the following equation:

dCgV jðx; x�; x0Þ
dx

¼ V 0
jðx�; g�; f

�Þ V yðx; g; fÞ
V xðx; g; fÞ

� �
ðB:2Þ

subject to the boundary condition

CgV jðx; x�; x0Þ ¼ C0
gV j

x � x0 ðB:3Þ

where C0
gV j

¼ hy00V 0
jðx�; g�Þi (C0

gV j
¼ 0 would be zero if

the position x0 were deterministically known (i.e.y00 ¼
z00 ¼ 0Þ). Substituting (D.4) into (B.2) and disregarding

moments of third-and higher order, the cross-moment
between transverse component of trajectory and velocity

is the solution of the following differential equation:

dCgV jðx; x�; x0Þ
dx

¼
hV 0

jðx�; g�; f
�ÞV 0

yðx; g; fÞi
hV xðx; g; fÞi

ðB:4Þ

which can be rewritten as

dCgV jðx; x�; x0Þ
dx

¼
CV jV y ðx�; x; g�; g; f

�
; fÞ

hV xðx; g; fÞi
ðB:5Þ

with boundary condition (B.3). Here CV jV iðx�; x; g�; g;
f
�
; fÞ ¼ hV 0

jðx�; g�; f
�ÞV 0

iðx; g; fÞi is the cross-covariance

between the components of the velocity along j-and
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i-directions, evaluated along the mean trajectory at the

abscissa x* and x, respectively.

The equation satisfied by CfV jðx; x�; x0Þ ¼ hf0V 0
j

ðx�; g�; f
�Þi can be obtained upon following a similar

procedure as:

dCfV jðx; x�; x0Þ
dx

¼
CV jV zðx�; x; g�; g; f

�
; fÞ

hV xðx; g; fÞi
ðB:6Þ

subject to the boundary condition

CfV jðx; x�; x0Þ ¼ C0
fV j

x � x0 ðB:7Þ

The cross-moments at zero lag are obtained upon solv-

ing the above system and then taking the limit for

x*! x, as:

r2
gV j

ðx; x0Þ ¼ CgV jðx; x� ! x; x0Þ;
r2

fV j
ðx; x0Þ ¼ CfV jðx; x� ! x; x0Þ ðB:8Þ
Appendix C. Cross-moment between transverse

derivative of velocity and trajectory fluctuations

Here we derive the equations satisfied by the cross-

moment between the trajectory and the transverse deriv-
atives of the component of the velocity along j-direction

(with j = x,y,z). These moments can be written in com-

pact notation as hg0D0
1njðx�Þi ¼ hg0 oV

0
jðx

�;g�;f�Þ
on� jg�;f� i, and

hf0D0
1njðx�Þi ¼ hf0 oV

0
jðx

�;g�;f�Þ
on� jg�;f� i, where j = x,y,z; and

n = g,f.
The knowledge of such quantities is crucial to calcu-

late the predictors of travel time and trajectory. Multi-

plying (17) by the derivative along direction n of the

random velocity fluctuation, and taking expectation

yields:

D0
1njðx�Þ

dg
dx

� �
¼ D0

1njðx�Þ
V yðx; g; fÞ
V xðx; g; fÞ

� �
ðC:1Þ

Upon observing that D0
1njðx�Þ is independent from the

abscissa x and modeling the trajectory as the sum of a

mean and a zero-mean random fluctuation, the cross-
covariance CgD1njðx; x�; x0Þ ¼ hg0D0

1njðx�Þi, between the

transverse component of trajectory evaluated at the ab-

scissa x and the derivative of the j-component of the

velocity along direction n evaluated at the abscissa x*

along the mean trajectory, satisfies the following

equation:

dCgD1njðx; x�;x0Þ
dx

¼ D0
1njðx�Þ

V yðx; g; fÞ
V xðx; g; fÞ

� �
ðC:2Þ

with the boundary condition

CgD1njðx; x�; x0Þ ¼ C0
gD1nj

x � x0 ðC:3Þ
where C0
gD1nj

¼ hy00D0
1njðx�Þi. Again, C0

gD1nj
¼ 0 if the posi-

tion x0 is deterministically known (i.e.y00 ¼ z00 ¼ 0).

Substituting (D.4) into (C.2) and disregarding moments

of third- and higher order yields

dCgD1njðx;x�;x0Þ
dx

¼ 1

hV xðx;g; fÞi
oCV jV y ðx�;x;g�;g; f�; fÞ

on�


g�;f

�

ðC:4Þ

where CV jV k is the cross-covariance between j- and i-

components of velocity.

The equation satisfied by CfD1njðx; x�; x0Þ ¼
hf0D0

1njðx�Þi ¼ hf0 oV
0
jðx

�;g�;f�Þ
on� jg�;f� i can be derived following

a similar procedure.
Appendix D. Ratio between velocity vector components

In this Appendix we develop the expression of the

ratio between the j � (j = y,z) and x-component of the
velocity vector. The j-component of the velocity vector

is given by (A.1)

V jðx; g; fÞ ¼ hV jðx; g; fÞi þ V 0
jðx; g; fÞ

with hV 0
jðx; g; fÞi ¼ 0 ðD:1Þ

From (D.1) and (13), the ratio between Vj and Vx is

approximated by

V jðx; g; fÞ
V xðx; g; fÞ


hV jðx; g; fÞi þ V 0

jðx; g; fÞ
hV xðx; g; fÞi

½1� N 1ðxÞ þ N 2ðxÞ


ðD:2Þ

Further disregarding in (D.2) fluctuations of order lar-

ger than 2, yields:

V jðx; g; fÞ
V xðx; g; fÞ

ffi hV jðx; g; fÞi
hV xðx; g; fÞi

½1� N 1ðxÞ þ N 2ðxÞ


þ
V 0

jðx; g; fÞ
hV xðx; g; fÞi

1� V 0
xðx; g; fÞ

hV xðx; g; fÞi

" #
ðD:3Þ

where N1(x) and N2(x) are defined in (14).

Writing the expected value and fluctuation of Vj as in

(A.4) and (A.6) respectively, and disregarding power of

fluctuations larger than 2, (D.3) becomes

V jðx; g; fÞ
V xðx; g; fÞ

ffi hV jðx; g; fÞi
hV xðx; g; fÞi

½1� N 1ðxÞ þ N 2ðxÞ


�
V 0

jðx; g; fÞV 0
xðx; g; fÞ

hV xðx; g; fÞi2

þ
V 0

jðx; g; fÞ þ g0D0
1gjðxÞ þ f0D0

1fjðxÞ
hV xðx; g; fÞi

" #

ðD:4Þ
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