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Random walk particle tracking methodologies to simulate solute transport of conservative
species constitute an attractive alternative for their computational efficiency and absence of
numerical dispersion. Yet, problems stemming from the reconstruction of concentrations from
particle distributions have typically prevented its use in reactive transport problems. The
numerical problem mainly arises from the need to first reconstruct the concentrations of
species/components from a discrete number of particles, which is an error prone process, and
then computing a spatial functional of the concentrations and/or its derivatives (either spatial
or temporal). Errors are then propagated, so that common strategies to reconstruct this
functional require an unfeasible amount of particles when dealing with nonlinear reactive
transport problems. In this context, this article presents a methodology to directly reconstruct
this functional based on kernel density estimators. The methodology mitigates the error
propagation in the evaluation of the functional by avoiding the prior estimation of the actual
concentrations of species. Themultivariate kernel associated with the corresponding functional
depends on the size of the support volume, which defines the area over which a given particle
can influence the functional. The shape of the kernel functions and the size of the support
volume determines the degree of smoothing, which is optimized to obtain the best unbiased
predictor of the functional using an iterative plug-in support volume selector. We applied the
methodology to directly reconstruct the reaction rates of a precipitation/dissolution problem
involving the mixing of two different waters carrying two aqueous species in chemical
equilibrium and moving through a randomly heterogeneous porous medium.
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1. Introduction

Solute transport of conservative solutes has been tradi-
tionally studied using the Advection–Dispersion Equation
(ADE) which is derived based on local arguments. In the last
decades, though, this equation has been greatly questioned
(e.g., Neuman and Tartakovsky, 2008, and references therein)
and a number of non-local formulations have appeared as
alternatives to describe effective transport of conservative
Fernàndez-Garcia),
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species at intermediate distances. These formulations include
Continuous Time Random Walks (CTRW) (Berkowitz et al.,
2006), Fractional Advection–Dispersion Equations (fADE)
(Benson et al., 2000), Multi-Rate Mass Transfer models
(MRMT) (Haggerty and Gorelick, 1995) and memory func-
tions (Carrera et al., 1998).

Irrespectively of the choice of the underlying Partial
Differential Equation governing the problem, transport
equations are solved by means of numerical methods. In
this context, Random Walk Particle Tracking Methodologies
(RWPT) constitute an attractive technique for their compu-
tational efficiency and absence of numerical dispersion. These
methods simulate solute transport by tracking in time a large
number of particles injected into the system, each one with a
predefined associated mass. At any time step (with Δt being
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either constant or random), the particle moves due to the
sum of two terms, one being deterministic (loosely associated
to advective processes) and the other random (loosely
associated to dispersive processes). For any given time,
resident concentrations can be recovered by defining a grid
and counting the mass per unit volume of the particles that
are located within a given support volume. The concentration
estimate of a given support is a random variable but
eventually converges to the “true value” when the number
of particles tends to infinity. In other words, the mean
estimation error of this estimator of concentrations decreases
with the number of particles. Despite these problems, particle
tracking algorithms are a good alternative compared to other
numerical methods such as finite elements or finite differ-
ences (e.g., Salamon et al., 2006a).

Particle tracking algorithms are a convenient alternative to
study molecular diffusion problems. In such cases particles can
be associated to molecules. This would mean that a mole of
solute should be discretized into NA (Avogrado's number,
NA=6.02 1023) molecules. In all practical applications found in
the literature thenumber of particlesused todiscretized agiven
mass is more in the order of 104 to 107 (e.g., Riva et al., 2008).
The traditional approach is based on considering that each
particle actually represents a group of molecules. In this case
particles have a representative size. This concept has been
included into a family of methods named smoothed-particle
hydrodynamics (SPH) (e.g., Tartakovsky and Meakin, 2005;
Herrera et al., 2008), where a spatial distance (known as the
“smoothing length”) is defined, over which the properties of
the particles are “smoothed” by a kernel function. This means
that any physical quantity of any particle can be obtained by
summing the relevant properties of all the particles which lie
within the range of the kernel. Similarly to SPH methods, the
approach actually taken by most of the existing particle
tracking codes (e.g., Pollock, 1988; Salamon et al., 2006b)
considers that particles have a zero support. All these methods
share in common that they provide noisy estimates of the
spatial or temporal distribution of concentrations. This is par-
ticularly disturbing when the objective is not actually estimat-
ing concentrations, but rather spatial or temporal derivatives,
which is the case in most applications regarding stochastic
hydrology or reactive transport.

The alternative we propose is based on considering that the
particles being tracked are just a subsample of the population.
This renders the problem of going from particles to concentra-
tions to be just a reconstruction problem, where the spatial or
temporal distribution of a given variable must be inferred from
theobservationof the spatial or temporal locationof a relatively
small subsample. The initial selection of the particles to be
tracked (amongst all the possible ones) becomes an uncorre-
lated random sampling process, each particle/molecule being
given the same probability. This way, the larger the concentra-
tion in a given volume, the larger the number of particlesfinally
selected (assuming a sufficient number of particles is consid-
ered). Since dispersion processes are intrinsically random, a
different realization of the solute transport problem can just be
seen as coming from a different sample extraction from the
initial population. The reconstruction problem considered only
accounts for subsamplingand therefore disregards theaccuracy
issues related to the flow problem solution (discretization
errors and convergence).
The methods to carry out such reconstruction can be
borrowed from many other problems in science. A widely
used family of methods is based on kernel particle filters,
where kernel density estimators (KDE) can be used to
reconstruct the posterior PDF's of the variable of interest.
Fields of application are signal processing, wireless commu-
nication, and robotics among others (see e.g., Chang and
Ansari, 2005; Stoessel and Sagerer, 2006) and it is the
approach taken in this paper. Particle filters can be considered
a generalization of the traditional Kalman filteringmethods. A
compilation of different particle filtering methods with a
comparison with Kalman filters and other types of grid-
filtering methods can be found in a lucid discussion by
Arulampalam et al. (2002).

In a KDE based approach, the multivariate kernel
associated with the corresponding functional (e.g., the pdf
of concentration estimator) depends on the size of the
support volume, which defines the area over which a given
particle can influence the functional. The shape of the kernel
functions and the size of the support volume determines the
degree of smoothing which is optimized to obtain the best
unbiased predictor of the functional using an iterative plug-in
support volume selector. Arguably, the main advantage of
Kernel Density filters is its ability to directly reconstruct
optimally not only concentrations, but also spatial and
temporal derivatives by optimizing the kernel functions in
order to properly reproduce all derivatives. Themethodology,
thus, mitigates the error propagation in the evaluation of the
derivatives by avoiding the prior estimation of the actual
concentrations of species. This results in a large reduction in
the number of particles needed for proper map reconstruc-
tion, a reduction that is more significant for highly complex
problems such as transport of reactive species in heteroge-
neous media.

Here, we present a simple and automatic KDE method to
directly reconstruct the concentration gradients involved in
transport quantities such as memory functions, mixing
indexes and reaction rates, based on the estimation of
marginal and conditional density functions of the concentra-
tion derivatives. The paper is structured as follows. First,
Section 2 describes the target transport quantities to be
estimated. Section 3 presents the theoretical framework and
development of the KDE methodology. Finally, Section 4
shows an application of the method conducive to reconstruct
the reaction rates of a precipitation/dissolution problem
involving the mixing of two different waters in chemical
equilibrium and moving through a homogeneous and a
randomly heterogeneous porous medium. The homogeneous
media is used to contrast the method against traditional
approaches and analytical solutions. The heterogeneous
media is used to illustrate the effect of mixing on reactive
transport in a real field setting.

2. Background and motivation

There are a number of key hydrogeological problems
where we are actually interested in directly obtaining a good
and efficient estimator of the derivatives or gradients. In the
last few years a great interest has arisen in the literature
concerning memory functions. This concept is directly
related to the slope of the breakthrough curve (see e.g.
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Haggerty et al., 2000; Dentz and Berkowitz, 2003), s which
can be written as

s =
dlogc
dlog t

=
t
c
dc
dt

: ð1Þ

Spatial derivatives of concentration are key when the
concept of dilution is introduced into the solute transport
picture. Kitanidis (1994) defined thedilution index E, ameasure
of the degree of dilution in the systemwhose derivative is given
in terms of the integral upon the full domainΩ of a combination
of the spatial derivatives of concentrations through

dln E
dt

= ∫
Ω

1
c∇ctD∇cdx: ð2Þ

The concept of dilution is directly related to that of con-
centration variance, σc

2, defined by Kapoor and Gelhar (1994),
Kapoor and Kitanidis (1998). Remarkably, σc

2 follows an ADE
type with a source term (or destruction term), fσc

2, given by

fσ2
c
x; tð Þ = 2〈∇c′tD∇c′〉; ð3Þ

where 〈⋅〉 denotes the expectation operator, and c′ is the
deviation of the concentration field with respect to the mean
field, obtained by solving a macrodispersive ADE. Dilution is
also the cause that the pdf (the probability density function)
of concentrations displays a beta-type distribution (see, e.g.,
Fiorotto and Caroni, 2002; Bellin and Tonina, 2007). Actually,
the pdf of concentrations in heterogeneous media can be
defined as the ensemble mean of an auxiliary function Π
(Sanchez-Vila et al., 2009) which itself follows an ADE type
equation with a source term fpdf given as

fpdf x; tð Þ = −∂2Π
∂c2

∇ctD∇c: ð4Þ

Particle tracking approaches can also be applied to reactive
transport problems. A particular case when reactive transport
can be efficiently handled using particle tracking is the case
when transport can be fully defined in terms of conservative
quantities called components (see Fernàndez-Garcia et al.,
2008, for an example). This is the case for example when all
solutes are subject to the same velocity and dispersivity (at any
given point) and reactions are instantaneous. In this case, and
assuming that the vector of conservative quantitiesu follows an
ADE, De Simoni et al. (2005) show that the vector of reaction
rates per unit volume of fluid, r, can be computed as

r x; tð Þ = H∇ut
D∇u; ð5Þ

H being the Hessian matrix involving the second derivatives
of concentration of solutes with respect to concentrations of
components. This matrix is obtained from a chemical
speciation process. Eq. (5) was further extended by Donado
et al. (2009) to obtain reaction rates when the governing
equation for the conservative quantities is a MRMT model.
We note that there are other alternative approaches to model
reactive transport with particle tracking avoiding the prior
calculation of concentrations (e.g. Gillespie, 1977). Still,
concentrations of reactants and products should be computed
optimally afterwards.

From the non-exhaustive list presented it is clear that a
number of problems in solute transport involve the compu-
tation of concentration gradients. Thus, it is crucial to find an
optimal way to estimate these derivatives/gradients when-
ever a particle tracking approach is used to solve the
underlying governing transport equation. The method we
propose is capable of finding optimal estimations of the
concentration gradients. It is true that some of the problems
addressed involve the computation of products of derivatives.
While it is true that the optimal of the product is not the
product of optimals, we believe that our approach can be used
even for these problems to provide suboptimal estimates of
quantities such as Eqs. (1), (2) and (5).

3. Kernel density estimators

Particle tracking techniques produce discrete distributions
of particle attributes (mass) that have to be converted to a
continuous distribution of concentrations. The mathematical
representation of the concentration field from particle
distributions depends on the type of observation. Particle
clouds observed at given times t0 yield resident concentra-
tions cr (concentrations averaged over a support volume),
whereas particles passing through control surfaces located at
x0 (e.g., a pumping well) lead to flux concentrations cf. By
normalizing these concentrations we can define the following
probability density functions,

p xð Þ = ϕ xð Þcr x; t0ð Þ
∫Ωϕ xð Þcr x; t0ð Þdx

; ð6Þ

p tð Þ = Q tð Þcf t;x0ð Þ
∫∞
0 Q tð Þcf t;x0ð Þdt

; ð7Þ

where p(x) is the probability of finding a solute mass within
the support volume [x,x+dx] at a given time t, and p(t) is the
probability of finding a solute mass within the time interval
[t, t+dt] at a given control location. ϕ(x) is the porosity and
Q(t) is the flow rate at the outlet location. The particle mass
is then related to the normalized concentrations by

p xð Þ =
mp Xp

� �
Mt

E δ x−Xp

� �n o
; ð8Þ

p tð Þ =
mp Tp
� �
Ma

E δ t−Tp
� �n o

; ð9Þ

where E{⋅} is the expectation operator over many injected
random particles, Xp is the pth-particle location at time t, Tp is
the first passage time of the pth-particle crossing the control
surface,Mt is the totalmass in the domainΩ at time t, andMa is
the total mass passing through the control surface,

Mt = ∫
Ω
ϕ xð Þcr x; t0ð Þdx; ð10Þ

Ma = ∫∞
0
Q tð Þcf t; x0ð Þdt: ð11Þ
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A natural estimate of the probability density functions
p(t) or p(x) is the relative frequency of mass, which basi-
cally consists in counting the particle mass falling into a
given support. In the traditional approach to recover con-
centrations from particle distributions, this support is de-
fined based on a given discretization of the domain in space
and/or time so that p(t) and p(x) are only evaluated at the
centroid of the discretization elements. This is mathemati-
cally written as

p xj

� �
≈ p̂ xj

� �
≡ 1
Mt

∑
p

mpI Xp∈Bj

n o
ΔVj

; ð12Þ

p tj
� �

≈ p̂ tj
� �

≡ 1
Ma

∑
p

mpI Tp∈ Bj

n o
Δtj

; ð13Þ

where the overhat indicates the estimator, Bj is respectively
the support volume or the time interval, I{⋅} is an indicator
function defined as

I x∈Bð Þ = 1 x∈B
0 otherwise;

�
ð14Þ

and xj and tj denote the centroid of the jth discretization
element in space and time with sizes ΔVj and Δtj,
respectively. In the limit, for infinitesimal supports, I/ΔVj

and I/Δtj approach a δ-function. By definition, these
estimators depend on the domain discretization, i.e., the
choice of the support size ΔVj and Δtj, and the number and
mass of particles falling into the support. In general, a small
support combined with a finite number of particles leads to
very noisy estimates, whereas an increase in the support
tends to oversmooth (over or underestimate) the estimated
concentration distribution. Thus, an optimum choice of the
support size exists. In this context, kernel density estimators
(KDE) provide a convenient mathematical framework to
obtain this optimal support.

The KDE approach starts by generalizing the previous
estimators as

p xð Þ≈ p̂ xð Þ≡ 1
Mt

∑
p
mpKH x−Xp

� �
; ð15Þ

p tð Þ≈ p̂ tð Þ≡ 1
Ma

∑
p
mpKH t−Tp

� �
; ð16Þ

where KH(x−Xp) and KH(t−Tp) are kernels or weighting
functions dependent on the separation distance between the
particle position/time and the point of estimation (e.g., Hardle,
1990). The traditional approach is recovered by usingKH= I{⋅}/
ΔV, which is known as the box kernel function. The difference
between the formulation given by Eqs. (12)–(13) and Eqs.
(15)–(16) is that the averaging of the kernels can be done also
at a point different from the discretization element centroid.
Thus, albeit the traditional box model introduces discontinu-
ities at the box edges, kernel estimators produces smooth
functions of space and/or time. These kernel functions are
weighting functions of the particle mass that defines its region
of influence. They are usually defined to be symmetric density
functions whose shape and size is parametrized based on a
smoothing parameter, H. Thus,

∫ KH sð Þds = 1; ð17Þ

where the integral extends over the full domain. This parameter
H defines how the particle attributes can influence the con-
centrations. For flux concentrations, KH is a univariate distri-
bution of particle arrival times and therefore H is a scalar
parameter. For resident concentrations, H is a symmetric
positive definite d×d matrix and KH is a d-variate distribution
of the particle position in space (d being the space dimension).
The Kernel function can generally be expressed by means of
elementary Kernel functions, K, defined as

KH sð Þ = H
−1=2K Vsð Þ; ð18Þ

V ⋅ Vt = H: ð19Þ

The shape of the elementary Kernel functions, K and the
choice of H determines the degree of smoothing of concentra-
tions. A variety of Kernel functions can be used to generate
smooth concentrations (e.g., Hardle, 1990). Well-knownmodels
are the Triangle model and the Gaussian model, respectively
written as

K sð Þ = ∏
d

i=1
1− jsijð ÞI jsij ≤ 1f g; ð20Þ

K sð Þ = 2πð Þ−d=2exp − s
T
s

� �
: ð21Þ

Kernel density estimation (KDE) is a standard technique for
exploring the histogram of unknown populations. The interest
of KDE methods to particle tracking methodologies is many-
fold: (1) since it is non-parametric, it allows the identification of
multimodal distributions (e.g., the presence of double peaks) as
well as the identification of non-Fickian features of solute
transport (e.g., pronounced tailing in breakthrough curves); (2)
It directly provides not only good estimates of concentrations
but also of their functionals (e.g., derivatives, gradients, dilution
and corresponding indexes); and (3) It can be used to directly
select the optimal degree of smoothing of the concentration
and/or their derivatives based on data in an automaticway. The
latter is briefly described in this section.

3.1. Optimal estimates of flux concentrations

Optimal estimates of p(t) can be determined based on an
appropriate selection of the smoothing parameter H, which is
nowa scalar parameter because theproblem is one-dimensional.
This is obtained by minimizing some error measure. A common
choice is the Mean Integrated Square Error (MISE), defined as

MISE Hð Þ = E ∫ p̂ tð Þ−p tð Þð Þ2dt
n o

: ð22Þ

Hereinafter, the limits of integration have been deliberately
excluded in all integrals to denote that the domain where
optimization is performed is amodeler's choice. As an example,
one can be interested in a concentration value that tends
asymptotically to a baseline value. Integrating up to infinity
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leads to an unbounded integral. Thus, a cut-off must be
imposed. Also, it would be possible to obtain different optimal
estimates in prespecified subdomains. In the simulations
presented in this paper we have used the full domain.

Since it is known that the choice of K has little effect on the
behavior of p̂, in Eq. (22) we avoided to write explicitly the
dependence of the shape of K inMISE. The reason for this is that
kernel functions can be rescaled such that the difference
between two KDE estimates obtained using two different
kernels is almost negligible (Marron andNolan, 1989).MISE can
bewritten as the sumof two terms, the integral of variance and
the integrated squared bias,

MISE Hð Þ = ∫Var p̂ tð Þ½ �dt + ∫Bias2 p̂ tð Þ½ �dt: ð23Þ

Assuming that all particles carry the same mass mp, so that
the total mass is M=Npmp, using a change of variable along
with the Taylor expansion of p(t) around t, and taking the limit
of MISE as NpH→∞ and H→0, the following asymptotic
expressions can be found (e.g., Silverman, 1986; Hardle, 1990),

MISE Hð Þ = AMISE Hð Þ + OðH 4 + NpH
� �−1Þ; ð24Þ

AMISE Hð Þ = H4

4
R p″ tð Þð Þ μ2 Kð Þð Þ2 +

1
HNp

R Kð Þ; ð25Þ

where the first and second terms of AMISE are respectively the
integrated squared bias and the asymptotic integral of variance
of the estimator. R(g) is the L2-norm of a given function g(t),
defined as

R gð Þ = ∫ g tð Þ2dt; ð26Þ

and μn(g) is the nth-absolute moment of g(t), defined as

μn gð Þ = ∫ tng tð Þdt: ð27Þ

Hence, theminimization ofMISEwith respect toH calls for
a compromise between oversmoothing (taking a large H to
reduce the variance) and undersmoothing (taking a small H
to reduce the bias). The optimal choice of the bandwidth,Hopt,
is then obtained by disregarding higher order terms and
minimizing the asymptotic expression of MISE(H). Setting
dAMISE/dH=0 yields (Park and Marron, 1990)

Hopt =
R Kð Þ

R p″ð Þ μ2 Kð Þð Þ2Np

 !1=5

: ð28Þ

Thus, it turns out that the optimal bandwidthHopt is inversely
proportional to the number of particles used to the power of 0.2
and depends on the unknown function R(p″). In the limit, when
Np→∞ the optimal bandwidth consistently approaches to zero.
R(p″) needs to be further estimated. Several methods can be
used for this matter: (1) rule-of-thumb methods (i.e., a guess of
the reference distribution p); (2) cross-validation methods; and
(3) plug-in methods. A review of these methods can be found
in several papers (e.g., (Jones et al., 1996; Park and Marron,
1990)) and books (e.g., (Hardle, 1990)).
3.2. Optimal estimates of resident concentrations

Likewise for flux concentrations, optimal estimates of
resident concentrations at time t, p(x), can also be determined
based on an appropriate selection of the support volume H,
defined based upon an integrated square error measure as

MISE Hð Þ = E ∫ p̂ xð Þ−p xð Þð Þ2dx
n o

: ð29Þ

In a one-dimensional problem, the estimation of resident
concentrations is exactly the same as for flux concentrations
exchanging t by x. Nonetheless, in practice, the spatial
distribution of resident concentrations is evaluated in two
or three dimensions. In this case, albeit the choice of the
smoothing parameter is rather simple for univariate pro-
blems, it becomes difficult for multivariate distributions,
where it is required to estimate several free parameters.
Wand and Jones (1993) found that the choice of H in two-
dimensional problems should, in general, account for the
curvature and orientation of the true distribution. Moreover,
its principal directions could not be chosen effectively using
the sample covariance matrix.

Several approaches can be considered to estimate multi-
variate probability density functions (Wand and Jones, 1994;
Sain, 2002; Duong and Hazelton, 2003; Duong et al., 2008). A
simple and effective alternative to avoid the difficulties
inherited in higher dimensions is through the use of marginal
and conditional densities (Simonoff, 1995). Let us consider
the estimation of resident concentrations in two dimensions.
By the definition of the conditional density function,

p x; yð Þ = p y jxð Þp xð Þ = p x jyð Þp yð Þ; ð30Þ

where p(x|y) and p(y|x) are the conditional density functions,
and p(x) and p(y) are the marginal density functions. From
Eq. (30), the bivariate density function can be estimated as
(Simonoff, 1995)

p x; yð Þ = p y jxð Þp xð Þp x jyð Þp yð Þ½ �1=2: ð31Þ

The marginal and conditional probability distributions are
estimated from the following expressions

p xð Þ≈ p̂ xð Þ≡ 1
Mt

∑
p

mpKH x−Xp

� �
; ð32Þ

p yð Þ≈ p̂ yð Þ≡ 1
Mt

∑
p

mpKH y−Yp
� �

; ð33Þ

p x jyð Þ≈ p̂ x jyð Þ≡ 1
Mt yð Þ∑p mpKH x−Xp

� �
; ð34Þ

p y jxð Þ≈ p̂ y jxð Þ≡ 1
Mt xð Þ∑p mpKH y−Yp

� �
; ð35Þ

Mt xð Þ = ∫ ϕc x; yð Þdy; ð36Þ

Mt yð Þ = ∫ ϕc x; yð Þdx; ð37Þ

Mt = ∫ ∫ ϕc x; yð Þdxdy; ð38Þ
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where KH is the kernel for univariate distributions (d=1). From
this, we see that the problem of estimating multivariate distri-
butions can be easily reduced to the simple estimation of the
correspondingmarginal and conditional univariate distributions.
We refer to Simonoff (1995) for the details on the numerical
implementation of Eq. (31).

3.3. Optimal estimates of the derivatives of flux concentrations

By knowing p(t) and its derivative with respect to time we
can determine the time derivative of the flux concentrations,
i.e., the slope of a breakthrough curve, through

dcf t;x0ð Þ
dt

=
Ma

Q tð Þ
dp tð Þ
dt

−p tð ÞdlnQ tð Þ
dt

� �
; ð39Þ

which is obtained by taking the derivative of Eq. (7). In this
context, KDEmethods are capable toprovideadirect, data-based
calculation of the optimal of the derivatives of p(t) without
having to use the estimates of concentrations p̂ðtÞ. The kernel
density estimate p̂ kð Þ tð Þ of the kth derivative of a univariate
probability density function p(t) is (e.g., Engel et al., 1994)

dkp tð Þ
dtk

≈ p̂ kð Þ tð Þ≡ 1
Ma

∑
p
mpK

kð Þ
H t−Tp
� �

; ð40Þ

where H denotes the support volume, and KH
(k) is defined based

on its corresponding elementary kernel function

K kð Þ
H sð Þ = 1

H1 + k
Kk H−1s
� �

; ð41Þ

Kk sð Þ = dkK
dsk

H−1s
� �

; ð42Þ

that satisfies

∫Kk sð Þs jds =
0 for j = 0; :::; k−1; k + 1; :::;m−1
−1ð Þkk! for j = k
μm Kkð Þ≠0 for j = m:

8<
: ð43Þ

Eq. (42) establishes the relationship between the elemen-
tary kernel function of p̂ kð Þ tð Þ and that of p̂ tð Þ, and requires K to
be kth differentiable. Using again the mean integrated squared
error criterion to evaluate the expected error of the estimator,
and assuming that all particles carry the same mass, the
following optimal support can be derived (Engel et al., 1994),

Hopt =
2k + 1ð ÞR Kkð Þm!2

2 m−kð Þ μm Kkð Þð Þ2R p mð Þ� �
Np

 !1= 2m + 1ð Þ
: ð44Þ

For completeness, the derivation of Eq. (44) is also given in
Appendix A. The important point here is to note that the
optimal support associated with the derivative of the density
function p̂ kð Þ is not the same as for the density function p̂. The
fluctuations associatedwith the derivative of a density function
are larger than those of the density function and, therefore, its
corresponding optimal support should be increased to provide
the same degree of smoothing.

3.4. Optimal estimates of the gradients of resident concentrations

Similar to the calculation of flux concentrations, by using
Eq. (6), the gradients of the resident concentrations can be
written as a function of p(x),

∇cr x; tð Þ = Mt

ϕ xð Þ ∇p xð Þ−p xð Þ∇lnϕ xð Þð Þ: ð45Þ

Here, ∇p(x) is a function of space and therefore its
estimation is difficult when the problem is not one-
dimensional. From Eq. (30), and after some algebra,

∂xp x; yð Þ = sgn
dp x jyð Þ

dx

� �
p y jxð Þdp xð Þ

dx
dp x jyð Þ

dx
p yð Þ

	 
1=2
ð46Þ

∂yp x; yð Þ = sgn
dp y jxð Þ

dy

� �
p x jyð Þdp yð Þ

dy
dp y jxð Þ

dy
p xð Þ

	 
1=2
ð47Þ

where sgn(z) is the signum function, whenever z≠0 then sgn
(z)=z/|z|. Thus, the problem of estimating the gradients of
the resident concentrations is reduced to the evaluation of the
derivatives of univariate density functions, which is a well
known problem. The calculation of the latter has been already
described in Section 3.3 and in Appendix A.

4. Computational investigations

Particle tracking simulations of a fairly complex multispe-
cies reactive system were conducted in a synthetic aquifer to
illustrate the process of reconstructing the reaction rates of
chemical species from particle mass distributions. The discus-
sion is organized as follows: Firstly, the reactive transport
problem is described in Section 4.1. Then, we examine the
performance of the proposed KDE method by contrasting
particle tracking solutions of the reaction rates taking place in a
homogeneous medium against its corresponding analytical
solution (Section 4.2). Finally, in Section 4.3, we explore the
effects of heterogeneity and the choice of the transport model
on the behavior of the reactive system.

4.1. Reactive transport problem

We consider a dissolution/precipitation problem involv-
ing the mixing of two different waters. Each water carries in
solution two aqueous species, B1 and B2, in instantaneous
local equilibrium with a solid mineral M3. The corresponding
reaction is

ν1B1 + ν2B2⇄M3: ð48Þ
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Without loss of generality we consider ν1=ν2=1. The
law of mass action implies that the activities of both aqueous
species, {Bi} (i=1,2), must satisfy the following condition

Keq = B1f g B2f g; ð49Þ

where Keq is the equilibrium constant. Assuming that the
solution is diluted, thenwe can assumeunit activity coefficients
and reformulate Eq. (48) in terms of concentrations

Keq = c1c2: ð50Þ

In this particular transport problem, themixing of any two
waters in equilibrium with the mineral leads to oversatura-
tion of the resulting mixture. Precipitation then takes place
instantaneously in order to re-equilibrate the system.

The migration of the two aqueous species is described by
means of a mass transfer model. Mass transfer models are
capable to simulate a large variety of processes, including
composite diffusive processes (Haggerty and Gorelick, 1995),
slow advection (Willmann et al., 2008), and subgrid model
heterogeneity (Fernàndez-Garcia et al., 2009). Here, we chose
the widely used single-rate mass transfer model. This model
considers an overlapped continuum media formed by a
mobile domain, where advection–dispersion takes place,
and one immobile domain, where mass can be transferred
to and temporarily be trapped. Thus, the partial differential
equations governing the chemical species are written as

ϕm
∂ci
∂t = −∇⋅ qci−ϕmDd∇cið Þ−ϕmΓi−ϕmri−fi; i = 1;2 ð51Þ

subject to the corresponding boundary and initial conditions,
where ϕm [dimensionless] is the mobile porosity, ci [ML−3] is
the volume-averaged concentration of the ith reactive specie,
Dd [L2T−1] is the dispersion tensor, and q [LT−1] is the Darcy
velocity. The functions ri, fi, and Γi [ML−3 T−1] are source/sink
terms accounting for the mass removal due to chemical reac-
tions, extractions, and mass transfer processes. The source/
sink term Γi is

Γi x; tð Þ = β
∂cim;i

∂t ; i = 1;2; ð52Þ

which describes the mass exchange between the mobile
and the immobile domain of the ith specie (per unit of aquifer
volume), β [dimensionless] is the field capacity of the
immobile domain, and cim,i [ML−3] is the immobile resident
concentration of the ith specie. The mass transfer equation
needed to close Eq. (51) together with Eq. (52) is written as

∂cim;i

∂t = α ci−cim;i

h i
−rim;i; i = 1;2; ð53Þ

where the reaction rate rim,i is the source/sink term [ML−3 T−1]
that accounts for the solute removed from the immobile domain
by precipitation (i.e., precipitated mass per unit of fluid volume
and time), andα [T−1] is the first-ordermass transfer coefficient.

We assume that both species sample the same advective
process (a counterexample would be colloidal material or
sorptive solutes) and both have the same dispersion coef-
ficient. Then, following (De Simoni et al., 2005) andWillmann
et al. (2009), this system can be fully defined by means of
conservative concentration components, defined as

u = c1 − c2; uim = cim;1 − cim;2: ð54Þ

Subtracting the two mass balance equations governing c1
and c2, the conservative components u and uim follow
conservative equations, i.e., without the presence of ri and fi
terms in Eq. (53). Once u and uim are obtained from solving
the conservative transport problem subject to initial and
boundary conditions, the species concentrations in the
mobile and immobile domains can be explicitly computed
by speciation as

ci = −1ð Þi−1 u
2

+
1
2

u2 + 4Keq

� �1=2
; i = 1;2; ð55Þ

cim;i = −1ð Þi−1 uim

2
+

1
2

uimð Þ2 + 4Keq

� �1=2
; i = 1;2: ð56Þ

Applying the chain rule to Eq. (53) and assuming that Keq

is uniform in space and time, Willmann et al. (2009) found
the following expression of the reaction rates taking place at
the mobile and immobile domains,

rm uð Þ = fchm uð Þfmix uð Þ ð57Þ

rim uimð Þ = fchm uimð Þfmix uimð Þ ð58Þ

where

fchm uð Þ = ∂2c2
∂u2 =

2Keq

u2 + 4Keq

� �3=2 ð59Þ

fmix uð Þ = ∇tuD∇u ð60Þ

In Eq. (58), fmix(⋅) term is ameasure of mixing, while fchm(⋅)
term is directly associatedwith the chemistry of the systemand
has an explicit expression in terms of the conservative
concentration components. Total reaction rates can then be
computed as

r =
ϕm

ϕtot
rm +

ϕim

ϕtot
rim; ð61Þ

where r is the total reaction rate (i.e., total precipitatedmassper
unit of fluid volume and time), ϕtot is the total porosity,
ϕtot=ϕim+ϕm, and rm and rim are respectively the reaction
rates in the mobile and immobile domain.

4.2. Homogeneous medium

In order to test the methodology, we compare the fmix

estimates obtained with the proposed KDE method with an
analytical solution. For this purpose, we consider a two-
dimensional homogeneous aquifer under steady-state uni-
form flow conditions. Solute transport is described by the
traditional reactive advection–dispersion equation, without
external forces or the presence of an immobile domain, i.e.,
ri≠0, fi=0 and Γi=0 in Eq. (51). Initially, the two aqueous
species {c1,c2} are in local equilibrium with the solid mineral
such that c1,0=c2,0 (i.e., u0=0). The initial equilibrium is
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then affected by a point-like instantaneous injection of water,
that is still in chemical equilibrium with the mineral but with
a different chemical composition. In this situation, knowing
that u=c1−c2 is the conservative specie (De Simoni et al.,
2005), the initial condition can be written as

u x; y; t = 0þ� �
= u0 + Δu0δ x − x0ð Þδ y− y0ð Þ; ð62Þ

where δ(⋅) is the Dirac delta function, (x0,y0) is the point of
injection, and Δu0 is the initial pulse of the u-concentration,
the solution of the transport problem is (Bear, 1972)

u x; y; tð Þ = u0 +
Δu0

4πt
ffiffiffiffiffiffiffiffiffiffiffi
DLDT

p exp −ρ2

2

 !
; ð63Þ

ρ x; y; tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0−vtð Þ2

2DLt
+

y−y0ð Þ2
2DTt

s
; ð64Þ

where DL and DT are the longitudinal and transverse dispersion
coefficient, and v is the groundwater velocity. FromEq. (63), the
analytical solution of the mixing term in Eq. (58) is

fmix uð Þ = Δu0

4πt
ffiffiffiffiffiffiffiffiffiffiffi
DLDT

p
 !2

ρ2

2t
exp −ρ2
� �

: ð65Þ

This analytical solution was contrasted against the recon-
structed solution of fmix obtained from particle tracking
simulations. Table 1 summarizes the parameters adopted for
the numerical simulations. Transport simulations were per-
formed in two steps: First, we used the RWPT Methodology
described in Appendix B to simulate the migration of a passive
solute representing the component u; Then, we evaluated fmix,
Eq. (60), by directly reconstructing the gradients of u using
expression (45) along with Eqs. (46) and (47).

Transport simulations started with the injection of a large
number of particles of equal mass,mp=ϕΔu0/Np, at the point
location (x0,y0), being Np the total number of particles.
Table 1
Flow and transport parameters adopted during the numerical simulations
performed in a homogeneous medium.

Parameter Value

Flow problem
Number of cells in x direction, nx 160
Number of cells in y direction, ny 160
Cell size in x direction, Δx[L] 1.0
Cell size in y direction, Δy[L] 1.0

Reactive transport problem
x coordinate of injection, x0 [L] 20.0
y coordinate of injection, y0 [L] 80.0
Injected mass, M0 [M] 1.0
Darcy-Velocity, qx[L/T] 0.3
Darcy-Velocity, qy[L/T] 0.0
Porosity, ϕ[−] 0.3
Longitudinal dispersion, DL[L2/T] 5.0
Transverse dispersion, DT[L2/T] 2.0
Equilibrium constant [M2/L6] 10−7

Pulse injection of u, Δu0 [M/L6] 1.0
Initial concentration of u, u0 [M/L6] 0.0

Random walk features
Grid Courant number [−] 0.1
Particle clouds were then measured at different times at
which the reconstruction of u and fmix was undertaken. The
procedure used to reconstruct fmix based on the proposed KDE
method is described in Appendix C.

Figs. 1 and 2 compare the analytical solution of u and fmix at
time t=60 with their corresponding optimal estimates
obtained using the proposed KDE method. Simulations were
performed with 2.5 million particles. The results are also
contrasted against the traditional approach, which simply
consists in counting particles within bins according to Eq.
(12). In this approach, the gradients involved in fmix were
computed using a finite difference spatial discretization of u
without any post-treatment. It is also compared to the coarse-
graining technique, where the size of the bins was manually
changed to obtain themost adequate smooth representation of
u and fmix. In overall, figures show that the proposed KDE
method is capable to automate the reconstruction of concen-
trations and reactions rates from particle distributions, and
further generate a more superior depiction of the reactions
rates compared with the traditional solution. The latter is seen
by noticing that, for the same particle distribution, the KDE
method is capable to provide a more complete reproduction of
the reaction rates than that of the traditional approach obtained
after coarse-graining,which still requires addingmore particles
into the system.Themaindifference stems fromthe incomplete
reproductionof themaximumvalues of the reaction rates given
by the traditional approach.

The rate of convergence of the estimator of u and fmix is
shown in Fig. 3, which plots the coefficient of variation of the
root mean square deviation of the estimator, CV(RMSD),
obtained with the traditional (without coarse-graining) and
optimal approach as a function of the number of particles.
Given some parameter p and its estimation p̂, the CV(RMSD)
was defined as

CVðRMSDÞ = RMSD
�p

; ð66Þ

where

�p =
1
V
∫V p xð Þdx; ð67Þ

RMSD =
1
V
∫V p xð Þ− p̂ xð Þð Þ2dx

� �1=2
: ð68Þ

In applying the traditional approach, we fixed the size of
the bin to Δx=Δy=1. Results show that the rate of
convergence associated with the KDE method is much
smaller than that of the corresponding traditional method.
Thus, the CV(RMSD) of concentrations displays a power law
behavior with an exponent varying from −0.25 (KDE
method) to −0.5 (traditional method). This is due to the
fact that the use of an optimal support in the KDE method
provides the “best unbiased” depiction of u and fmix for any
given number of particles, being the intersection between the
traditional and optimal solution the number of particles
needed in the traditional approach to obtain reliable predic-
tions. Importantly, the traditional estimates of fmix are orders
of magnitude larger than its corresponding optimal solution,
meaning that an unfeasible number of particles is required
when using the traditional method.



Fig. 1. Comparison of the analytical solution of uwith the traditional approach (before and after coarse-graining) and the proposed KDEmethodology. The bin sizes
before and after coarse-graining were Δx=Δy=1.0 unit and Δx=Δy=2.0 units, respectively. Random walk simulations were performed with 2,500,000
particles.
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Since the problem here is homogeneous and dispersive-
dominated, the application of the traditional method satisfied
that enough particles fall into bins of support size much
Fig. 2. Comparison of the analytical solution of fmix with the traditional approach (be
time t=60. The bin sizes before and after coarse-graining were Δx=Δy=1.0 u
performed with 2,500,000 particles.
smaller than the width of the mixing zone, where gradients
are higher. Contrary to these desirable conditions, solute
transport in the field is mostly advective-dominated and
fore and after coarse-graining) and the proposed KDE methodology at a given
nit and Δx=Δy=4.5 units, respectively. Random walk simulations were

image of Fig.�1
image of Fig.�2


Fig. 3. Coefficient of variation of the root mean square deviation of the
estimated concentration and mixing term obtained with the traditional and
optimal approach as a function of the number of particles.

Table 2
Flow problem parameters adopted during the numerical simulations
performed in a heterogeneous medium.

Parameter Value

Flow problem
Number of cells in x direction, nx 160
Number of cells in y direction, ny 160
Cell size in x direction, Δx[L] 1.0
Cell size in y direction, Δy[L] 1.0
Mean hydraulic gradient in x direction, Jx[−] 0.001
Mean hydraulic gradient in y direction, Jy[−] 0.0

Heterogeneous field
Geometric mean of T [L2/T] 1.0
Variance of ln T [−] 3.6
Range of variogram [L] 16.0
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drastically influenced by heterogeneity. This produces highly
distorted plumes with strong gradients and narrow mixing
zones at the plume edges.Within this context, results indicate
that the proposed KDE method to reconstruct reaction rates
will allow the use of a more feasible number of particles to
achieve the same quality of results.

4.3. Heterogeneous medium

A synthetic example of the effects of physical heterogeneity
on reaction rates is presented in this section. For this purpose
one realization of a sequential gaussian simulation of the
natural log of the transmissivity field, Y= lnT(x), of an aquifer
was chosen. The following standardized isotropic spherical
semivariogramwas applied for the stochastic simulation of the
transmissivity field

γ hð Þ
σ2
Y

=
1:5

h
a

� �
−0:5

h
a

� �3
if h≤a

1 otherwise;

8><
>: ð69Þ

where a[L] is the range, h is the lag distance, and σY
2 is the

variance of lnT (see Table 2). The computational domain
represents a squared aquifer with dimensions of Lx=160 and
Ly=160, and a discretization of Δx=Δy=1.0. The aquifer was
assumed to be confined and with constant head boundaries at
Table 3
Transport parameters adopted during the numerical simulations performed
in a heterogeneous medium.

Parameter Model A Model B

Area of injection, A0 [L2] 30×50 30×50
Injected mass, M0 [M] 0.3 0.15
Mobile porosity, ϕ[−] 0.3 0.15
Immobile porosity, ϕ[−] 0. 0.15
Longitudinal dispersion, DL[L2/T] 0.3 0.3
Transverse dispersion, DT[L2/T] 0.1 0.1
Mass transfer coefficients, αj[T−1] 0. 0.0002
Equilibrium constant [M2/L6] 10−7 10−7

Constant time step [T] 7. 7.
Number of particles [−] 2.5×106 5.0×106
x=0and x=160 andwith the no-flow at the remainingmodel
boundaries.

Two conceptual transport models were considered: Solute
transport in Model A was purely influenced by advection and
dispersion (ri≠0 and Γi=0), whereas in Model B a mass
transfer equation was added to the advection–dispersion
equation (ri≠0 and Γi≠0). The parameters adopted for both
transport models are summarized in Table 3. Again, transport
simulations were conducted in two steps. First, we simulated
the migration of the conservative species, u and uim, using the
RWPT methodology described in Appendix B; Then, we
evaluated rm and rim through the expressions (57) and (58)
by directly reconstructing the gradients of u and uim using the
proposed KDE method.

In both models, the aquifer was initially in geochemical
equilibrium at all points. A water with a different chemical
composition was then injected instantaneously in a rectan-
gular area A0 of 30 units width and 50 units height located
orthogonal to the principal flow direction. A sketch of the set-
up adopted for the transport simulations is provided in Fig. 4.
Knowing again that u=c1−c2 and uim=c1,im−c2,im are the
conservative species for this problem, the initial condition can
be written in terms of u and uim as

Model A:

u x; y; t = 0þ� �
=

M0

ϕtotA0
I x∈A0f g; ð70Þ

Model B:

u x; y; t = 0þ� �
=

M0

ϕmA0
I x∈A0f g; ð71Þ

uim x; y; t = 0þ� �
= 0: ð72Þ

Eq. (72) expresses that the injection of water takes place
through the mobile zone (preferential flow paths). Para-
meters were chosen so that both plumes move at the same
mean velocity and respond to the same impulse of u. The
same mass was assigned to all particles, which were initially
injected uniformly inside A0 (see Table 3). Concentrations and
reaction rates were then reconstructed from particle clouds
measured at different times using the proposed KDE method.

The simulation results of u and r associated with model A
are shown in Fig. 5 for a given time t=4064. The two
contributing terms involved in the reaction rate, i.e., mixing

image of Fig.�3


Fig. 4. Design of transport numerical simulations.
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fmix and chemical speciation fchem, Eqs. (60) and (59), are also
depicted. At this particular time, transverse dispersion has
still not induced complete mixing, and the shape of the plume
of the conservative component u is mostly distorted accord-
ing to the velocity field. This produces sharp fronts and
narrowmixing areas at the plume edges. Consistent with this
picture, the proposed KDE method predicts chemical reac-
tions to take placemostly at the plume boundaries. By looking
Fig. 5. Numerical simulations of concentrations and reactions rates in a heterogeneo
2,500,000 particles.
at the mixing and chemistry terms, we see that in this
particular case, the chemistry term mainly serves to amplify
the mixing impulse without significantly changing the
location of the hot spots of the reaction rates.

Most frequently in stochastic contaminant hydrology, the
spatial fluctuations of the dispersion tensor due to the
randomness of the velocity field are neglected and considered
of minor importance. That is to say that the dispersion tensor
in the conceptual transport model is assumed constant and
fixed to some averaged value. This assumption may not be
valid in reactive transport problems where the processes
taking place at the local scale can still influence the global
behavior (Fernàndez-Garcia et al., 2008). In order to assess
the effects of assuming a constant dispersion during the
calculation of the reaction rate, we estimated fmix in two
different ways:

ϕm fmix x; tð Þ = αL∥q x; tð Þ∥ ∂u
∂x

� �2

+ αT∥q x; tð Þ∥ ∂u
∂y

� �2

;

ϕm fmix x; tð Þ = �DL
∂u
∂x

� �2

+ �DT
∂u
∂y

� �2

; ð73Þ

where to make results comparable we have selected the
constant diffusion parameters so that

�DL = αL
�q D�T = αT

�q ð74Þ
us aquifer at time t=4064. Random walk simulations were performed with

image of Fig.�4
image of Fig.�5


Fig. 6. Comparison of the reactions rates obtained in a heterogeneous aquifer using constant dispersion coefficients with those obtained using spatially varying
dispersion coefficients at time t=4064. The constant dispersion coefficients were computed using an average of the absolute value of the point velocities. Random
walk simulations were performed with 2.5 million particles.

110 D. Fernàndez-Garcia, X. Sanchez-Vila / Journal of Contaminant Hydrology 120-121 (2011) 99–114
with

�q =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�q 2

x + �q 2
y

q
;�qi =

1
V
∫
V
jqi uð Þ jdu; i = 1;2; ð75Þ

being V the area of the domain. The reaction rates simulated
using a constant or a spatially varying dispersion tensor are
Fig. 7. Comparison of the reactions rates of the single-rate mass transfer model with
associated with the single-rate mass transfer model include both the mobile and th
shown in Fig. 6. Remarkably, a constant dispersion tensor
significantly oversmoothed the reaction rates, concentrating
their maximum values nearby the source where concentration
gradients are higher. This is in contrast to the reaction rates
obtained using a spatially varying dispersion tensor which
showed larger reaction rates at the leading front of the plume.
Recalling that mixing is caused by the joint effect of dispersion
the ADE model at time t=5410. The total concentrations and reaction rates
e immobile contribution.

image of Fig.�6
image of Fig.�7
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and concentration gradients, see Eq. (5), we attribute this
behavior to the fact that the plume front ismoving preferentially
through areas of high velocities, where the effects of velocity-
driven dispersion and large concentration gradients coexist.
These effects are seen remarkably more important in the
transverse direction to the mean flow direction.

The choice of a proper transport model may also
drastically influence the model predictions of reaction rates.
This is shown in Fig. 7, which compares the simulated
reactions rates produced by models A and B at time t=5410.
Interestingly, the addition of a mass transfer term into the
advection–dispersion equation enhances the speed of dilu-
tion into the system. This is due to the joint effect of local
mass transfer processes, intrinsically described by the
transport model through Γi(x, t) (Donado et al., 2009), and
physical heterogeneity, i.e., the spatial variability of q(x) in
the governing transport equation.

5. Conclusions

The inherent fluctuations associated with the estimates of
concentrations and their functionals (reaction rates) have
typically prevented the use of particle tracking techniques to
simulate complex reactive problems. In this paper, we have
shown that this appreciation stems from a naive understand-
ing of the reconstruction of functionals of concentrations in
the particle tracking literature. Based on kernel density
functions, we have presented an efficient method for the
reconstruction of the reactions rates of chemical species from
particle distributions. In doing this, the following main
findings should be highlighted:

1. The reconstruction of reaction rates or other functionals of
species concentrations in multi-dimensional reactive
transport problems can easily be optimized and further
automated via KDEmethods. This provides a powerful tool
for all branches of particle tracking techniques which
require generating continuous fields of a system variable
from discrete particle distributions. Thus, this method is
well suited to directly reconstruct important system
variables such as the dilution index E, the destruction of
the concentration variance fσc

2, the destruction/production
of uncertainty fpdf, the reaction rates of reactive species r,
boundary mass fluxes and others.

2. Since the proposed KDE method avoids the propagation of
the inherent fluctuations associated with the estimates of
concentrations and their functionals, it renders particle
tracking techniques the capability to be potentially coupled
to any existing geochemical transport code. In this regard,
we have shown that the couplingwill bemost efficient if the
conceptual framework of De Simoni et al., 2005, which
deconstructs the reactive problem into a conservative one
plus speciation, is adopted to either calculate chemical
species concentrations or their reaction rates.

The proposed KDE method was then used to analyze
particle tracking simulations performed in a highly hetero-
geneous aquifer with the objective to evaluate the reactions
rates of a bimolecular precipitation/dissolution chemical
system. Two different transport conceptual models were
considered: the traditional advection–dispersion model and
the single-rate mass transfer model. The main results can be
summarized as follows:

1. The proposed KDE method allows the reconstruction of
sharp plume gradients and narrow mixing zones in
heterogeneous aquifers, which are otherwise not well
estimated by traditional approaches.

2. Simulation results show that the spatial variability of the
dispersion tensor is crucial for making predictions of the
reaction rates of chemical species taking place in hetero-
geneous aquifers. A constant dispersion tensor produces
smoother representations of the reaction rate with a less
amount of total precipitate. The reason is that the mixing
term, fmix, depends on the balance of two driven forces:
velocity-driven dispersion and concentration gradients. At
short times, the gradients close to the source are extremely
large and control the reaction rate. As times evolve, the
gradients slowly dissipate and compete with the velocity-
driven dispersive processes. In this regime, the fact that
the plume front moves preferentially through high
velocities areas creates strong reaction rates at the leading
edges of the plume. These effects were observed to be
more important in the transverse direction to the mean
flow direction.

3. The choice of the transport model can drastically effect
mixing-driven chemical reactions. In this context, the joint
effect of local mass transfer processes (intrinsically
described in the transport model) and heterogeneity is
shown to substantially enhanced mixing. At large times,
when the plume is highly diluted (small concentration
gradients), the reaction rate is mainly controlled by the
transverse dispersion processes taking place at the leading
front of the plume.
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Appendix A. Statistics of the estimators of concentrations
and their derivatives

This Appendix describes the statistics of the estimates of
univariate probability density functions and their derivatives.
This is illustrated by actually looking at the estimates of p(t),
i.e., the normalized flux concentrations. Let us consider a
random sample T1,...,TNa

of Na particle arrival times observed
at a control location. Each random sample is described by the
same probability density function p(t), and assumed inde-
pendent. This is a valid assumption in most random walk
codes because the simulation of Na particles starts from Na

independent uniformly (or normally) distributed numbers.
We will also consider that all particles carry the same mass
mp. The kernel estimator of dkp/dt k is

p̂ kð Þ tð Þ≡ 1
H1 + kMa

∑
p

mpKk
t−Tp
H

� �
: ð76Þ
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Optimal estimates of p(t) can be determined by minimiz-
ing the Mean Integrated Square Error function (MISE),
Eq. (22). MISE can be expressed as the sum of the integrated
squared bias and the integral of variance through Eq. (23).We
will start by evaluating the integrated squared bias. Taking
the expected value of Eq. (76) we have that

E p̂ tð Þ½ � = 1
H1 + k

E Kk
t−Tp
H

� �� �
: ð77Þ

By the definition of the expected operator, this can be
written as

E p̂ tð Þ½ � = 1
H1 + k

∫Kk
t−τ
H

� �
p τð Þdτ; ð78Þ

Using then a change of variable s=(t−τ)/H yields

E p̂ tð Þ½ � = 1
Hk

∫Kk sð Þp t−sHð Þds; ð79Þ

which expresses that the expected value is given by the
convolution ofKkwithp. Using a Taylor expansion of p around t,

p t + sHð Þ = ∑
∞

n=0

1
n!

p nð Þ tð Þ −1ð ÞnsnHn
; ð80Þ

and knowing that Kk satisfies Eq. (43) yields

E p̂ tð Þ½ � = p kð Þ tð Þ + Hm−k

m!
p mð Þ tð Þμm Kkð Þ + O Hm−k

� �
; ð81Þ

so that the local squaredbiasof theestimator, E p̂ðkÞ
h i

−p kð Þ� �2
, is

Bias2 p̂ kð Þ tð Þ
h i

=
H2 m−kð Þ

m!2
p mð Þ tð Þ
� �2

μm Kkð Þð Þ2 + O H2 m−kð Þ� �
:

ð82Þ

On the other hand, the integral of the variance can be
estimated as follows. Knowing thatMa=Npmp and taking the
variance of the estimator of p̂ðtÞ we obtain

Var p̂ tð Þ½ � = 1
H2 1 + kð ÞNp

Var Kk
t−Tp
H

� �� �
; ð83Þ

where we have used that the random samples of particle
arrival times are independent randomvariables. Knowing that
Var[Kk]=E[Kk

2]−(E[Kk])2 and using the change of variable
s=(t−τ)/H yields

Var Kkf g = ∫ K2
k sð Þp t − sHð ÞHds− ∫ Kk sð Þp t − sHð ÞHds

� �2
:

ð84Þ
Using a Taylor expansion of p̂ kð Þ around t and knowing that

Kk satisfies Eq. (43) yields

Var Kkf g = HR Kkð Þp tð Þ− H2 1 + kð Þ p kð Þ tð Þ
� �2

+ :::; 85ð Þ ð85Þ
and therefore, substituting Eq. (85) into Eq. (83), leads to

Var p̂ tð Þ½ � = 1
NpH

2k + 1
R Kkð Þp tð Þ−H2k + 1p2 tð Þ
� �

+ O NpH
2k + 1

� �−1
� �

:

ð86Þ

Substituting Eqs. (82) and (86) into Eq. (23), and taking
the limit of MISE as NpH→∞ and H→0, the following
asymptotic value is obtained

AMISE Hð Þ = H2 m−kð Þ

m!2
R p mð Þ tð Þ
� �

μm Kkð Þð Þ2 +
1

NpH
2k + 1

R Kkð Þ:

ð87Þ

Appendix B. Algorithm to simulate transport with the
random walk methodology

This Appendix describes the algorithm used to simulate
the transport of the conservative species, u and uim, with the
random walk particle tracking methodology. The displace-
ment of a particle is given by a drift term that related to the
advective movement and a superposed Brownian motion
responsable for dispersion,

Xp t + Δtð Þ = Xp tð Þ + ∫t + Δt
t A Xp; τ

� �
dτ

+ B Xp; t
� �

Δ Wt ;

ð88Þ

where Δt is the time step, Xp(t) is the position of a particle at
time t, A is a drift vector, i.e., any change in E[Xp(t)] is due to
the drift term, and B▵Wτ is the noise term. The tensor B is
the displacement matrix that determines the strength of the
particle random motion, and Wt is an n variable Wiener
process determined by

B Xp; t
� �

△Wτ = B Xp; t
� �

ξ tð Þ
ffiffiffiffiffiffi
Δt

p
; ð89Þ

where ξ(t) is a vector of independent (uncorrelated in space
and time), normally distributed random variables with zero
mean and unit variance.

Itô (1951) demonstrated that the particle density distri-
bution f(Xp,t), defined as the probability of finding a particle
within a given interval [Xp,Xp+dXp] at a given time t, ob-
tained from Eq. (88) fulfills, in the limit of large particle
numbers and an infinitesimally small step size, the Fokker–
Planck equation. This partial differential equation is similar
but not equal to the ADE. An analogy between them is es-
tablished by the following relationship

A =
q

ϕR
+

1
ϕR

∇⋅ ϕDð Þ

2
D

R
= B⋅Bt

:

ð90Þ

In the numerical simulations, the velocity field needed to
simulate transport was obtained by previously solving the flow
problem using a finite difference code, MODFLOW2000 (Har-
baugh et al., 2000). This velocity fieldwas then incorporated into
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a random walk code, RW3D-MRMT (Fernàndez-Garcia et al.,
2005; Salamonet al., 2006b) to solve the transport problem. In all
cases, the samemass was associated to all particles,mp=M0/Np,
and the time integration of the drift term in Eq. (88) was
calculated using the semi-analytical tracking method of Pollock
(1988).

RW3D-MRMT simulates the single-ratemass transfermodel
by simply tracking the state of a particle (Salamon et al., 2006b).
The state of a particle is an attribute that defines the domain at
which the particle is present at a given time within the double
porositymedium. The change fromone state to another is easily
determined using transition probabilities. The transition prob-
ability, Pij(▵t), that a particle presently in state iwill be in state j
at a time t+▵t is given by

P Δtð Þ =
1 + βe− 1 + βð ÞαΔt

1 + β
1−e− 1 + βð ÞαΔt

1 + β

β−βe− 1 + βð ÞαΔt

1 + β
β + e− 1 + βð ÞαΔt

1 + β

0
BBBB@

1
CCCCA: ð91Þ

If a particle is in the mobile domain, then it is susceptible
to advection and dispersion, otherwise the particle is not
allowed to move. Having calculated the phase transition
probabilities, numerical implementation into particle track-
ing is done easily. For each time step a uniform [0,1] random
number Y is drawn for each particle and is compared to the
corresponding probability. The state of a particle being in the
mobile phase is adjusted accordingly.

Appendix C. Algorithm to reconstruct mixing and
reaction rates

The algorithm used to directly estimate fmix and r from
particle clouds representing u during numerical simulations
proceeds as follows: (1) Discretized the x and y axes in
bins {Bxi} and {Byj}; (2) Estimate the marginal densities p(x)
and p(y) and their derivatives using univariate kernel esti-
mators with an optimal support; (3) Estimate the conditional
densities p x jy∈Byj

� �
and p y jx∈Bxi

� �
and their derivatives for

all i,j using univariate kernel estimators with an optimal
support; (4) Reconstruct the partial derivatives of the bi-
variate probability density function based on Eqs. (46) and
(47); (5) Calculate the gradients of u by means of Eq. (45);
and (6) Estimate fmix and r by using Eqs. (60) and (61),
respectively.

The optimal bandwidth of the estimates of the probability
density function and their derivatives were computed
through Eqs. (28) and (44) by employing Gaussian Kernel
functions. In doing this, the plug-in method of (Engel et al.,
1994) was chosen to estimate the corresponding L2-norm, R
(p(m)), involved in Eqs. (28) and (44).
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