33 research outputs found

    Evolution of tyrosinemia type 1 disease in patients treated with nitisinone in Spain

    Get PDF
    Nephrocalcinosis; Phenotype; Severe liver dysfunctionNefrocalcinosis; Fenotipo; Disfunción hepática graveNefrocalcinosi; Fenotip; Disfunció hepàtica greuTreatment with nitisinone (NTBC) has brought about a drastic improvement in the treatment and prognosis of hereditary tyrosinemia type I (HT1). We conducted a retrospective observational multicentric study in Spanish HT1 patients treated with NTBC to assess clinical and biochemical long-term evolution.We evaluated 52 patients, 7 adults and 45 children, treated with NTBC considering: age at diagnosis, diagnosis by clinical symptoms, or by newborn screening (NBS); phenotype (acute/subacute/chronic), mutational analysis; symptoms at diagnosis and clinical course; biochemical markers; doses of NTBC; treatment adherence; anthropometric evolution; and neurocognitive outcome.The average follow-up period was 6.1 ± 4.9 and 10.6 ± 5.4 years in patients with early and late diagnosis respectively. All patients received NTBC from diagnosis with an average dose of 0.82 mg/kg/d. All NBS-patients (n = 8) were asymptomatic at diagnosis except 1 case with acute liver failure, and all remain free of liver and renal disease in follow-up. Liver and renal affectation was markedly more frequent at diagnosis in patients with late diagnosis (P T.After NTBC treatment a reduction in tyrosine and alpha-fetoprotein levels was observed in all the study groups, significant for alpha-fetoprotein in no NBS-group (P = .03), especially in subacute/chronic forms (P = .018).This series confirms that NTBC treatment had clearly improved the prognosis and quality of life of HT1 patients, but it also shows frequent cognitive dysfunctions and learning difficulties in medium-term follow-up, and, in a novel way, a high percentage of overweight/obesity

    Treatment adherence in tyrosinemia type 1 patients

    Get PDF
    Background: While therapeutic advances have signifcantly improved the prognosis of patients with hereditary tyrosinemia type 1 (HT1), adherence to dietary and pharmacological treatments is essential for an optimal clinical outcome. Poor treatment adherence is well documented among patients with chronic diseases, but data from HT1 patients are scarce. This study evaluated pharmacological and dietary adherence in HT1 patients both directly, by quantifying blood levels nitisinone (NTBC) levels and metabolic biomarkers of HT1 [tyrosine (Tyr), phenylalanine (Phe), and succinylacetone]; and indirectly, by analyzing NTBC prescriptions from hospital pharmacies and via clinical inter views including the Haynes-Sackett (or self-compliance) test and the adapted Battle test of patient knowledge of the disease. Results: This observational study analyzed data collected over 4 years from 69 HT1 patients (7 adults and 62 children; age range, 7months-35 years) who were treated with NTBC and a low-Tyr, low-Phe diet. Adherence to both pharmacological and, in particular, dietary treatment was poor. Annual data showed that NTBC levels were lower than recommended in more than one third of patients, and that initial Tyr levels were high (>400µM) in 54.2-64.4% of patients and exceeded 750µM in 25.8% of them. Remarkably, annual normalization of NTBC levels was observed in 29.4-57.9% of patients for whom serial NTBC determinations were performed. Poor adherence to dietary treatment was more refractory to positive reinforcement: 36.2% of patients in the group who underwent multiple analyses per year maintained high Tyr levels during the entire study period, and, when considering each of the years individually this percentage ranged from 75 to 100% of them. Indirect methods revealed percentages of non-adherent patients of 7.3 and 15.9% (adapted Battle and Haynes tests, respectively). Conclusions: Despite initially poor adherence to pharmacological and especially dietary treatment among HT1 patients, positive reinforcement at medical consultations resulted in a marked improvement in NTBC levels, indicating the importance of systematic positive reinforcement at medical visits.Funding. NTBC determination was funded by SOBI. Acknowledgements. The authors thank all participating centers, as well as the patients and their families

    Clinical Utility of LCT Genotyping in Children with Suspected Functional Gastrointestinal Disorder

    Get PDF
    Genetic testing is a good predictor of lactase persistence (LP) in specific populations but its clinical utility in children is less clear. We assessed the role of lactose malabsorption in functional gastrointestinal disorders (FGID) in children and the correlation between the lactase non-persistence (LNP) genotype and phenotype, based on exhaled hydrogen and gastrointestinal symptoms, during a hydrogen breath test (HBT). We also evaluate dairy consumption in this sample. We conducted a 10-year cross-sectional study in a cohort of 493 children with suspected FGID defined by Roma IV criteria. Distribution of the C/T-13910 genotype was as follows: CC, 46.0%; TT, 14.4% (LP allele frequency, 34.1%). The phenotype frequencies of lactose malabsorption and intolerance were 36.3% and 41.5%, respectively. We observed a strong correlation between genotype and both lactose malabsorption (Cramér’s V, 0.28) and intolerance (Cramér’s V, 0.54). The frequency of the LNP genotype (p = 0.002) and of malabsorption and intolerance increased with age (p = 0.001 and 0.002, respectively). In 61% of children, evaluated dairy consumption was less than recommended. No association was observed between dairy intake and diagnosis. In conclusion, we found a significant correlation between genotype and phenotype, greater in older children, suggesting that the clinical value of genetic testing increases with ageS

    Bone Status in Patients with Phenylketonuria: A Systematic Review

    Get PDF
    Phenylketonuria (PKU) is the most common inborn error of amino acid metabolism. Although dietary and, in some cases, pharmacological treatment has been successful in preventing intellectual disability in PKU patients who are treated early, suboptimal outcomes have been reported, including bone mineral disease. In this systematic review, we summarize the available evidence on bone health in PKU patients, including data on bone mineral density (BMD) and bone turnover marker data. Data from cohort and cross-sectional studies of children and adults (up to 40 years of age) were obtained by searching the MEDLINE and SCOPUS databases following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. For each selected study, quality assessment was performed applying the Risk Of Bias In Non-randomized Studies of Interventions (ROBINS I) tool. We found that mean BMD was lower in PKU patients than in reference groups, but was within the normal range in most patients when expressed as Z-score values. Furthermore, data revealed a trend towards an imbalance between bone formation and bone resorption, favoring bone removal. Data on serum levels of minerals and hormones involved in bone metabolism were very heterogeneous, and the analyses were inconclusive. Clinical trials that include the analysis of fracture rates, especially in older patients, are needed to gather more evidence on the clinical implications of lower BMD in PKU patients

    Similarities between acylcarnitine profiles in large for gestational age newborns and obesity

    Get PDF
    Large for gestational age (LGA) newborns have an increased risk of obesity, insulin resistance, and metabolic syndrome. Acylcarnitine profiles in obese children and adults are characterized by increased levels of C3, C5, and certain medium-chain (C12) and long-chain (C14:1 and C16) acylcarnitines. C2 is also increased in insulin-resistant states. In this 1-year observational study of 2514 newborns (246 LGA newborns, 250 small for gestational age (GA) newborns, and 2018 appropriate for GA newborns), we analyzed and compared postnatal acylcarnitine profiles in LGA newborns with profiles described for obese individuals. Acylcarnitine analysis was performed by tandem mass spectrometry on dried-blood spots collected on day 3 of life. LGA newborns had higher levels of total short-chain acylcarnitines (p < 0.001), C2 (p < 0.01) and C3 (p < 0.001) acylcarnitines, and all C12, C14, and C16 acylcarnitines except C12:1. They also had a higher tendency towards carnitine insufficiency (p < 0.05) and carnitine deficiency (p < 0.001). No significant differences were observed between LGA newborns born to mothers with or without a history of gestational diabetes. This novel study describes a postnatal acylcarnitine profile in LGA with higher levels of C2, C3, total acylcarnitines, and total short-chain acylcarnitines that is characteristic of childhood and adult obesity and linked to an unhealthy metabolic phenotype.Dr Lopez has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 281854 -the ObERStress project, Xunta de Galicia (2015-CP079 and 2016-PG068), MINECO co-funded by FEDER (SAF2015-71026-R and BFU2015-70454-REDT/Adipoplast)S

    Switching to Glycerol Phenylbutyrate in 48 Patients with Urea Cycle Disorders: Clinical Experience in Spain

    Get PDF
    Clinical practice; Glycerol phenylbutyrate; Urea cycle disordersPráctica clinica; Fenilbutirato de glicerol; Trastornos del ciclo de la ureaPràctica clínica; Fenilbutirat de glicerol; Trastorns del cicle de la ureaBackground and objectives: Glycerol phenylbutyrate (GPB) has demonstrated safety and efficacy in patients with urea cycle disorders (UCDs) by means of its clinical trial program, but there are limited data in clinical practice. In order to analyze the efficacy and safety of GPB in clinical practice, here we present a national Spanish experience after direct switching from another nitrogen scavenger to GPB. Methods: This observational, retrospective, multicenter study was performed in 48 UCD patients (age 11.7 ± 8.2 years) switching to GPB in 13 centers from nine Spanish regions. Clinical, biochemical, and nutritional data were collected at three different times: prior to GPB introduction, at first follow-up assessment, and after one year of GPB treatment. Number of related adverse effects and hyperammonemic crisis 12 months before and after GPB introduction were recorded. Results: GPB was administered at a 247.8 ± 102.1 mg/kg/day dose, compared to 262.6 ± 126.1 mg/kg/day of previous scavenger (46/48 Na-phenylbutyrate). At first follow-up (79 ± 59 days), a statistically significant reduction in ammonia (from 40.2 ± 17.3 to 32.6 ± 13.9 μmol/L, p < 0.001) and glutamine levels (from 791.4 ± 289.8 to 648.6 ± 247.41 μmol/L, p < 0.001) was observed. After one year of GPB treatment (411 ± 92 days), we observed an improved metabolic control (maintenance of ammonia and glutamine reduction, with improved branched chain amino acids profile), and a reduction in hyperammonemic crisis rate (from 0.3 ± 0.7 to less than 0.1 ± 0.3 crisis/patients/year, p = 0.02) and related adverse effects (RAE, from 0.5 to less than 0.1 RAEs/patients/year p < 0.001). Conclusions: This study demonstrates the safety of direct switching from other nitrogen scavengers to GPB in clinical practice, which improves efficacy, metabolic control, and RAE compared to previous treatments.This study was funded by AECOM (Spanish Association for the Study of Inborn Errors of Metabolism). Immedica Pharma Spain funded medical writing support and article processing charges

    Transferrin Isoforms, Old but New Biomarkers in Hereditary Fructose Intolerance

    Get PDF
    Hereditary Fructose Intolerance (HFI) is an autosomal recessive inborn error of metabolism characterised by the deficiency of the hepatic enzyme aldolase B. Its treatment consists in adopting a fructose-, sucrose-, and sorbitol (FSS)-restrictive diet for life. Untreated HFI patients present an abnormal transferrin (Tf) glycosylation pattern due to the inhibition of mannose-6-phosphate isomerase by fructose-1-phosphate. Hence, elevated serum carbohydrate-deficient Tf (CDT) may allow the prompt detection of HFI. The CDT values improve when an FSS-restrictive diet is followed; however, previous data on CDT and fructose intake correlation are inconsistent. Therefore, we examined the complete serum sialoTf profile and correlated it with FSS dietary intake and with hepatic parameters in a cohort of paediatric and adult fructosemic patients. To do so, the profiles of serum sialoTf from genetically diagnosed HFI patients on an FSS-restricted diet (n = 37) and their age-, sex- and body mass index-paired controls (n = 32) were analysed by capillary zone electrophoresis. We found that in HFI patients, asialoTf correlated with dietary intake of sucrose (R = 0.575, p < 0.001) and FSS (R = 0.475, p = 0.008), and that pentasialoTf+hexasialoTf negatively correlated with dietary intake of fructose (R = −0.386, p = 0.024) and FSS (R = −0.400, p = 0.019). In addition, the tetrasialoTf/disialoTf ratio truthfully differentiated treated HFI patients from healthy controls, with an area under the ROC curve (AUROC) of 0.97, 92% sensitivity, 94% specificity and 93% accuracy.This work was supported by Exp. No. 2018111095, Basque Government, Health Department to J.D.H., and by FEDER; Federación Española de Enfermedades Raras (FI18053)

    Switching to Glycerol Phenylbutyrate in 48 Patients with Urea Cycle Disorders: Clinical Experience in Spain

    Get PDF
    Background and objectives: Glycerol phenylbutyrate (GPB) has demonstrated safety and efficacy in patients with urea cycle disorders (UCDs) by means of its clinical trial program, but there are limited data in clinical practice. In order to analyze the efficacy and safety of GPB in clinical practice, here we present a national Spanish experience after direct switching from another nitrogen scavenger to GPB. Methods: This observational, retrospective, multicenter study was performed in 48 UCD patients (age 11.7 ± 8.2 years) switching to GPB in 13 centers from nine Spanish regions. Clinical, biochemical, and nutritional data were collected at three different times: prior to GPB introduction, at first follow-up assessment, and after one year of GPB treatment. Number of related adverse effects and hyperammonemic crisis 12 months before and after GPB introduction were recorded. Results: GPB was administered at a 247.8 ± 102.1 mg/kg/day dose, compared to 262.6 ± 126.1 mg/kg/day of previous scavenger (46/48 Na-phenylbutyrate). At first follow-up (79 ± 59 days), a statistically significant reduction in ammonia (from 40.2 ± 17.3 to 32.6 ± 13.9 μmol/L, p < 0.001) and glutamine levels (from 791.4 ± 289.8 to 648.6 ± 247.41 μmol/L, p < 0.001) was observed. After one year of GPB treatment (411 ± 92 days), we observed an improved metabolic control (maintenance of ammonia and glutamine reduction, with improved branched chain amino acids profile), and a reduction in hyperammonemic crisis rate (from 0.3 ± 0.7 to less than 0.1 ± 0.3 crisis/patients/year, p = 0.02) and related adverse effects (RAE, from 0.5 to less than 0.1 RAEs/patients/year p < 0.001). Conclusions: This study demonstrates the safety of direct switching from other nitrogen scavengers to GPB in clinical practice, which improves efficacy, metabolic control, and RAE compared to previous treatments.This study was funded by AECOM (Spanish Association for the Study of Inborn Errors of Metabolism). Immedica Pharma Spain funded medical writing support and article processing charges

    Vitamin C and folate status in hereditary fructose intolerance

    Get PDF
    Background Hereditary fructose intolerance (HFI) is a rare inborn error of fructose metabolism caused by the deficiency of aldolase B. Since treatment consists of a fructose-, sucrose- and sorbitol-restrictive diet for life, patients are at risk of presenting vitamin deficiencies. Although there is no published data on the status of these vitamins in HFI patients, supplementation with vitamin C and folic acid is common. Therefore, the aim of this study was to assess vitamin C and folate status and supplementation practices in a nationwide cohort of HFI patients. Methods Vitamin C and folic acid dietary intake, supplementation and circulating levels were assessed in 32 HFI patients and 32 age- and sex-matched healthy controls. Results Most of the HFI participants presented vitamin C (96.7%) and folate (90%) dietary intake below the recommended population reference intake. Up to 69% received vitamin C and 50% folic acid supplementation. Among HFI patients, 15.6% presented vitamin C and 3.1% folate deficiency. The amount of vitamin C supplementation and plasma levels correlated positively (R = 0.443; p = 0.011). Interestingly, a higher percentage of non-supplemented HFI patients were vitamin C deficient when compared to supplemented HFI patients (30% vs. 9.1%; p = 0.01) and to healthy controls (30% vs. 3.1%; p < 0.001). Conclusions Our results provide evidence for the first time supporting vitamin C supplementation in HFI. There is great heterogeneity in vitamin supplementation practices and, despite follow-up at specialised centres, vitamin C deficiency is common. Further research is warranted to establish optimal doses of vitamin C and the need for folic acid supplementation in HFI.This work was supported by Exp. No. 2018111095, Basque Government, Health Department; FEDER, the Spanish Federation for Rare Diseases (FI18053); and Danone-Nutricia-Metabolics, which was not involved in the study hypothesis/design, execution, analysis, or interpretation

    Beyond genetics: Deciphering the impact of missense variants in CAD deficiency

    Get PDF
    16 páginas, 5 figuras, 1 tablaCAD is a large, 2225 amino acid multienzymatic protein required for de novo pyrimidine biosynthesis. Pathological CAD variants cause a developmental and epileptic encephalopathy which is highly responsive to uridine supplements. CAD deficiency is difficult to diagnose because symptoms are nonspecific, there is no biomarker, and the protein has over 1000 known variants. To improve diagnosis, we assessed the pathogenicity of 20 unreported missense CAD variants using a growth complementation assay that identified 11 pathogenic variants in seven affected individuals; they would benefit from uridine treatment. We also tested nine variants previously reported as pathogenic and confirmed the damaging effect of seven. However, we reclassified two variants as likely benign based on our assay, which is consistent with their long-term follow-up with uridine. We found that several computational methods are unreliable predictors of pathogenic CAD variants, so we extended the functional assay results by studying the impact of pathogenic variants at the protein level. We focused on CAD's dihydroorotase (DHO) domain because it accumulates the largest density of damaging missense changes. The atomic-resolution structures of eight DHO pathogenic variants, combined with functional and molecular dynamics analyses, provided a comprehensive structural and functional understanding of the activity, stability, and oligomerization of CAD's DHO domain. Combining our functional and protein structural analysis can help refine clinical diagnostic workflow for CAD variants in the genomics era.This work was supported by grant RTI2018-098084-B-I00 financed by MCIN/AEI/10.13039/501100011033/ and “FEDER Unamanera de hacer Europa,” by grant PID2021-128468NBI00 financed by MCIN/AEI/10.13039/501100011033 and by a grant from Fundacion Ram on Areces Ciencias de la Vida (XX National Call) to SR-M. FdC-O is a postdoctoral 1182 del CAÑO-OCHOA ET AL. 15732665, 2023, 6, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/jimd.12667 by Csic Organización Central Om (Oficialia Mayor) (Urici), Wiley Online Library on [13/11/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License fellow of the Generalitat Valenciana (APOSTD 2021). AR-d-C is supported by salary from the European Commission–Next Generation EU through the CSIC Global Health Platform (PTI+ Salud Global) established by EU Council Regulation 2020/2094. HHF, BN, and SMP were supported by The Rocket Fund, R01DK099551, and U54 NS115198. SMP is also supported by a training component of U54 NS115198. MPW is supported by an MSCA Individual Fellowship (894669) and an FWO Senior Postdoctoral Fellowship (1289023N). X-ray diffraction experiments at synchrotrons were done through the participation of SR-M in the BAG proposals 2017082302, 2018082950, 2019093709, 2020074406, 2021075216, and 2022075911 at ALBA, and MX-2076, MX-2351, and MX-2452 at European Synchrotron Radiation Facility. The authors thank the ALBA synchrotron staff and Max H. Nanao at beamtime ID23-2 at the ESRF synchrotron for assistance.Peer reviewe
    corecore