216 research outputs found

    Vertical wind profile characterization and identification of patterns based on a shape clustering algorithm

    Get PDF
    Wind power plants are becoming a generally accepted resource in the generation mix of many utilities. At the same time, the size and the power rating of individual wind turbines have increased considerably. Under these circumstances, the sector is increasingly demanding an accurate characterization of vertical wind speed profiles to estimate properly the incoming wind speed at the rotor swept area and, consequently, assess the potential for a wind power plant site. The present paper describes a shape-based clustering characterization and visualization of real vertical wind speed data. The proposed solution allows us to identify the most likely vertical wind speed patterns for a specific location based on real wind speed measurements. Moreover, this clustering approach also provides characterization and classification of such vertical wind profiles. This solution is highly suitable for a large amount of data collected by remote sensing equipment, where wind speed values at different heights within the rotor swept area are available for subsequent analysis. The methodology is based on z-normalization, shape-based distance metric solution and the Ward-hierarchical clustering method. Real vertical wind speed profile data corresponding to a Spanish wind power plant and collected by using a commercialWindcube equipment during several months are used to assess the proposed characterization and clustering process, involving more than 100000 wind speed data values. All analyses have been implemented using open-source R-software. From the results, at least four different vertical wind speed patterns are identified to characterize properly over 90% of the collected wind speed data along the day. Therefore, alternative analytical function criteria should be subsequently proposed for vertical wind speed characterization purposes.The authors are grateful for the financial support from the Spanish Ministry of the Economy and Competitiveness and the European Union —ENE2016-78214-C2-2-R—and the Spanish Education, Culture and Sport Ministry —FPU16/042

    Factores predictores de supresión virológica a largo plazo en pacientes VIH y caracterización de la respuesta inmunológica

    Get PDF
    Describir los factores determinantes de supresión virológica a largo plazo en personas infectadas por el VIH tras inicio de una pauta antiretroviral supresora. Caracterizar la evolución de la respuesta inmunológica mediante la recuperación de CD4.Material y métodos: estudio de cohortes retrospectivo que incluyó a 337 pacientes que habían alcanzado la supresión virológica tras inicio de TAR y con un seguimiento posterior de al menos 10 años. Se utilizó como variable dependiente el mantener la CVS de forma continua vs discontinua en el tiempo. Resultados: de los 337 pacientes incluidos, 57 (16,91%) pacientes habían mantenido la CVS de forma continua frente a 280 (83,09%) que lo habían mantenido de forma intermitente. Se encontró que el grupo de CVS no mantenida presentaba una edad de adquisición menor (29 años vs 31años, p=0,018), mientras que era mayor el tabaquismo (83,6%vs 70,2%, p=0,018), el ser UDVP (53,1%vs 31,6%, p=0,004) y la coinfección por VHC(54,9% vs 40,9%, p=0,046). En pacientes con CVS continua no se recogió ninguna muerte (p=0,003). El análisis multivariante confirmó que el ser UDVP era un factor de riesgo para no mantener CVS de forma continua (RR 3,879 (IC 95% (1,07-14,067), p=0,003). La recuperación de CD4 fue mayor en los pacientes con CVS mantenida (350(-357 ¿ 929) vs 157(-1410- 1354), p=0,001).Conclusiones: El ser UDVP es un factor de riesgo para no mantener la carga viral suprimida. La respuesta inmunológica mediante recuperac ión de CD4 es mayor en los pacientes con CVS mantenida. Los pacientes con CVS no mantenida podrían tener mayor mortalidad

    Derecho disciplinario y seguridad jurídica

    Get PDF
    La potestad sancionadora de la Administración tiene su reconocimiento constitucional en el art. 25, donde además se señala una clara limitación máxima en cuanto a la naturaleza de las sanciones a imponer, que no podrán implicar directa o subsidiariamente privación de libertad. Pero poco más ilustra el precepto al respecto. Este reconocimiento lleva implícito otro: y es el de la autosuficiencia sancionadora de la Administración que, en primera instancia, se vale por si sola para sancionar a su personal, sin necesidad de la intervención judicial. De ahí precisamente que se pueda concluir que el reconocimiento de esa potestad pone en riesgo el principio de jurisdiccionalidad de la sanción, en virtud del cual, son los juzgados y tribunales los que las imponen, ya que en el ámbito interno de la Administración, si el sancionado no recurre la sanción que le ha sido impuesta, cobrará firmeza sin intervención jurisdiccional. Por este motivo, dada la excepcionalidad que supone que las sanciones no sean impuestas por los juzgados y Tribunales, es preciso controlar esa potestad y mantenerla siempre al amparo del principio de legalidad

    A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine

    Full text link
    [EN] Currently, wind power is the fastest-growing means of electricity generation in the world. To obtain the maximum efficiency from the wind energy conversion system, it is important that the control strategy design is carried out in the best possible way. In fact, besides regulating the frequency and output voltage of the electrical signal, these strategies should also extract energy from wind power at the maximum level of efficiency. With advances in micro-controllers and electronic components, the design and implementation of efficient controllers are steadily improving. This paper presents a maximum power point tracking controller scheme for a small wind energy conversion system with a variable speed permanent magnet synchronous generator. With the controller, the system extracts optimum possible power from the wind speed reaching the wind turbine and feeds it to the grid at constant voltage and frequency based on the AC-DC-AC conversion system. A MATLAB/SimPowerSystems environment was used to carry out the simulations of the system. Simulation results were analyzed under variable wind speed and load conditions, exhibiting the performance of the proposed controller. It was observed that the controllers can extract maximum power and regulate the voltage and frequency under such variable conditions. Extensive results are included in the paper.This work was partially supported by the Spanish Ministry of Education, Culture and Sports-reference FPU16/04282.García-Sánchez, TM.; Mishra, AK.; Hurtado-Perez, E.; Puche-Panadero, R.; Fernández-Guillamón, A. (2020). A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine. Energies. 13(21):1-16. https://doi.org/10.3390/en13215809S1161321Fernández-Guillamón, A., Villena-Lapaz, J., Vigueras-Rodríguez, A., García-Sánchez, T., & Molina-García, Á. (2018). An Adaptive Frequency Strategy for Variable Speed Wind Turbines: Application to High Wind Integration Into Power Systems. Energies, 11(6), 1436. doi:10.3390/en11061436Fernández-Guillamón, A., Sarasúa, J. I., Chazarra, M., Vigueras-Rodríguez, A., Fernández-Muñoz, D., & Molina-García, Á. (2020). Frequency control analysis based on unit commitment schemes with high wind power integration: A Spanish isolated power system case study. International Journal of Electrical Power & Energy Systems, 121, 106044. doi:10.1016/j.ijepes.2020.106044Huber, M., Dimkova, D., & Hamacher, T. (2014). Integration of wind and solar power in Europe: Assessment of flexibility requirements. Energy, 69, 236-246. doi:10.1016/j.energy.2014.02.109Fernández-Guillamón, A., Martínez-Lucas, G., Molina-García, Á., & Sarasua, J.-I. (2020). Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems. Sustainability, 12(18), 7750. doi:10.3390/su12187750Fernández‐Guillamón, A., Vigueras‐Rodríguez, A., & Molina‐García, Á. (2019). Analysis of power system inertia estimation in high wind power plant integration scenarios. IET Renewable Power Generation, 13(15), 2807-2816. doi:10.1049/iet-rpg.2019.0220Fernández-Guillamón, A., Das, K., Cutululis, N. A., & Molina-García, Á. (2019). Offshore Wind Power Integration into Future Power Systems: Overview and Trends. Journal of Marine Science and Engineering, 7(11), 399. doi:10.3390/jmse7110399Muñoz-Benavente, I., Hansen, A. D., Gómez-Lázaro, E., García-Sánchez, T., Fernández-Guillamón, A., & Molina-García, Á. (2019). Impact of Combined Demand-Response and Wind Power Plant Participation in Frequency Control for Multi-Area Power Systems. Energies, 12(9), 1687. doi:10.3390/en12091687Gil-García, I. C., García-Cascales, M. S., Fernández-Guillamón, A., & Molina-García, A. (2019). Categorization and Analysis of Relevant Factors for Optimal Locations in Onshore and Offshore Wind Power Plants: A Taxonomic Review. Journal of Marine Science and Engineering, 7(11), 391. doi:10.3390/jmse7110391Molina-Garcia, A., Fernandez-Guillamon, A., Gomez-Lazaro, E., Honrubia-Escribano, A., & Bueso, M. C. (2019). Vertical Wind Profile Characterization and Identification of Patterns Based on a Shape Clustering Algorithm. IEEE Access, 7, 30890-30904. doi:10.1109/access.2019.2902242Global Wind Report 2019https://gwec.net/global-wind-report-2019/Chagas, C. C. M., Pereira, M. G., Rosa, L. P., da Silva, N. F., Freitas, M. A. V., & Hunt, J. D. (2020). From Megawatts to Kilowatts: A Review of Small Wind Turbine Applications, Lessons From The US to Brazil. Sustainability, 12(7), 2760. doi:10.3390/su12072760Culotta, S., Franzitta, V., Milone, D., & Moncada Lo Giudice, G. (2015). Small Wind Technology Diffusion in Suburban Areas of Sicily. Sustainability, 7(9), 12693-12708. doi:10.3390/su70912693Nazir, M. S., Wang, Y., Bilal, M., Sohail, H. M., Kadhem, A. A., Nazir, H. M. R., … Ma, Y. (2020). Comparison of Small-Scale Wind Energy Conversion Systems: Economic Indexes. Clean Technologies, 2(2), 144-155. doi:10.3390/cleantechnol2020010García-Sánchez, T., Muñoz-Benavente, I., Gómez-Lázaro, E., & Fernández-Guillamón, A. (2020). Modelling Types 1 and 2 Wind Turbines Based on IEC 61400-27-1: Transient Response under Voltage Dips. Energies, 13(16), 4078. doi:10.3390/en13164078Fernández-Guillamón, A., Martínez-Lucas, G., Molina-García, Á., & Sarasua, J. I. (2020). An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation. Energies, 13(13), 3369. doi:10.3390/en13133369Tiwari, R., Padmanaban, S., & Neelakandan, R. (2017). Coordinated Control Strategies for a Permanent Magnet Synchronous Generator Based Wind Energy Conversion System. Energies, 10(10), 1493. doi:10.3390/en10101493Sajadi, M., De Kooning, J. D. M., Vandevelde, L., & Crevecoeur, G. (2019). Harvesting wind gust energy with small and medium wind turbines using a bidirectional control strategy. The Journal of Engineering, 2019(17), 4261-4266. doi:10.1049/joe.2018.8182Chavero-Navarrete, E., Trejo-Perea, M., Jáuregui-Correa, J. C., Carrillo-Serrano, R. V., & Ríos-Moreno, J. G. (2019). Expert Control Systems for Maximum Power Point Tracking in a Wind Turbine with PMSG: State of the Art. Applied Sciences, 9(12), 2469. doi:10.3390/app9122469Orlando, N. A., Liserre, M., Mastromauro, R. A., & Dell’Aquila, A. (2013). A Survey of Control Issues in PMSG-Based Small Wind-Turbine Systems. IEEE Transactions on Industrial Informatics, 9(3), 1211-1221. doi:10.1109/tii.2013.2272888Daili, Y., Gaubert, J.-P., Rahmani, L., & Harrag, A. (2019). Quantitative Feedback Theory design of robust MPPT controller for Small Wind Energy Conversion Systems: Design, analysis and experimental study. Sustainable Energy Technologies and Assessments, 35, 308-320. doi:10.1016/j.seta.2019.08.002Zhang, X., Huang, C., Hao, S., Chen, F., & Zhai, J. (2016). An Improved Adaptive-Torque-Gain MPPT Control for Direct-Driven PMSG Wind Turbines Considering Wind Farm Turbulences. Energies, 9(11), 977. doi:10.3390/en9110977Shafiei, A., Dehkordi, B. M., Kiyoumarsi, A., & Farhangi, S. (2017). A Control Approach for a Small-Scale PMSG-Based WECS in the Whole Wind Speed Range. IEEE Transactions on Power Electronics, 32(12), 9117-9130. doi:10.1109/tpel.2017.2655940Oliveira, T. D., Tofaneli, L. A., & Santos, A. Á. B. (2020). Combined effects of pitch angle, rotational speed and site wind distribution in small HAWT performance. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(8). doi:10.1007/s40430-020-02501-4Battisti, L., Benini, E., Brighenti, A., Dell’Anna, S., & Raciti Castelli, M. (2018). Small wind turbine effectiveness in the urban environment. Renewable Energy, 129, 102-113. doi:10.1016/j.renene.2018.05.062Jeong, H. G., Seung, R. H., & Lee, K. B. (2012). An Improved Maximum Power Point Tracking Method for Wind Power Systems. Energies, 5(5), 1339-1354. doi:10.3390/en5051339Zhu, Y., Cheng, M., Hua, W., & Wang, W. (2012). A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems. Energies, 5(5), 1398-1412. doi:10.3390/en5051398Chen, J.-H., & Hung, W. (2015). Blade Fault Diagnosis in Small Wind Power Systems Using MPPT with Optimized Control Parameters. Energies, 8(9), 9191-9210. doi:10.3390/en8099191Syahputra, R., & Soesanti, I. (2019). Performance Improvement for Small-Scale Wind Turbine System Based on Maximum Power Point Tracking Control. Energies, 12(20), 3938. doi:10.3390/en12203938Aubrée, R., Auger, F., Macé, M., & Loron, L. (2016). Design of an efficient small wind-energy conversion system with an adaptive sensorless MPPT strategy. Renewable Energy, 86, 280-291. doi:10.1016/j.renene.2015.07.091Lopez-Flores, D. R., Duran-Gomez, J. L., & Chacon-Murguia, M. I. (2020). A Mechanical Sensorless MPPT Algorithm for a Wind Energy Conversion System based on a Modular Multilayer Perceptron and a Processor-in-the-Loop Approach. Electric Power Systems Research, 186, 106409. doi:10.1016/j.epsr.2020.106409Urtasun, A., Sanchis, P., San Martín, I., López, J., & Marroyo, L. (2013). Modeling of small wind turbines based on PMSG with diode bridge for sensorless maximum power tracking. Renewable Energy, 55, 138-149. doi:10.1016/j.renene.2012.12.035Kot, R., Rolak, M., & Malinowski, M. (2013). Comparison of maximum peak power tracking algorithms for a small wind turbine. Mathematics and Computers in Simulation, 91, 29-40. doi:10.1016/j.matcom.2013.03.010Muhsen, H., Al-Kouz, W., & Khan, W. (2019). Small Wind Turbine Blade Design and Optimization. Symmetry, 12(1), 18. doi:10.3390/sym12010018Qi, Z., & Lin, E. (2012). Integrated power control for small wind power system. Journal of Power Sources, 217, 322-328. doi:10.1016/j.jpowsour.2012.06.039Doll, C. N. H., & Pachauri, S. (2010). Estimating rural populations without access to electricity in developing countries through night-time light satellite imagery. Energy Policy, 38(10), 5661-5670. doi:10.1016/j.enpol.2010.05.014Zhang, S., & Qi, J. (2011). Small wind power in China: Current status and future potentials. Renewable and Sustainable Energy Reviews, 15(5), 2457-2460. doi:10.1016/j.rser.2011.02.009Rehman, S., & Sahin, A. Z. (2012). Wind power utilization for water pumping using small wind turbines in Saudi Arabia: A techno-economical review. Renewable and Sustainable Energy Reviews, 16(7), 4470-4478. doi:10.1016/j.rser.2012.04.036Park, J. H., Chung, M. H., & Park, J. C. (2016). Development of a small wind power system with an integrated exhaust air duct in high-rise residential buildings. Energy and Buildings, 122, 202-210. doi:10.1016/j.enbuild.2016.04.037Simic, Z., Havelka, J. G., & Bozicevic Vrhovcak, M. (2013). Small wind turbines – A unique segment of the wind power market. Renewable Energy, 50, 1027-1036. doi:10.1016/j.renene.2012.08.038Parag, Y., & Sovacool, B. K. (2016). Electricity market design for the prosumer era. Nature Energy, 1(4). doi:10.1038/nenergy.2016.32Kortabarria, I., Andreu, J., Martínez de Alegría, I., Jiménez, J., Gárate, J. I., & Robles, E. (2014). A novel adaptative maximum power point tracking algorithm for small wind turbines. Renewable Energy, 63, 785-796. doi:10.1016/j.renene.2013.10.036Emejeamara, F. C., Tomlin, A. S., & Millward-Hopkins, J. T. (2015). Urban wind: Characterisation of useful gust and energy capture. Renewable Energy, 81, 162-172. doi:10.1016/j.renene.2015.03.028Britter, R. E., & Hanna, S. R. (2003). FLOW AND DISPERSION IN URBAN AREAS. Annual Review of Fluid Mechanics, 35(1), 469-496. doi:10.1146/annurev.fluid.35.101101.161147Askarov, A., Andreev, M., & Ruban, N. (2020). Impact assessment of full-converter wind turbine generators integration on transients in power systems. THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2019). doi:10.1063/5.0000832Pillay, P., & Krishnan, R. (1988). Modeling of permanent magnet motor drives. IEEE Transactions on Industrial Electronics, 35(4), 537-541. doi:10.1109/41.9176Shariatpanah, H., Fadaeinedjad, R., & Rashidinejad, M. (2013). A New Model for PMSG-Based Wind Turbine With Yaw Control. IEEE Transactions on Energy Conversion, 28(4), 929-937. doi:10.1109/tec.2013.2281814Ata, R., & Kocyigit, Y. (2010). An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines. Expert Systems with Applications, 37(7), 5454-5460. doi:10.1016/j.eswa.2010.02.068Anelion SW 3.5 GThttps://www.wind-turbine-models.com/turbines/950-anelion-sw-3.5-gtSalles, M. B. C., Hameyer, K., Cardoso, J. R., Grilo, A. P., & Rahmann, C. (2010). Crowbar System in Doubly Fed Induction Wind Generators. Energies, 3(4), 738-753. doi:10.3390/en3040738Kim, Y.-S., Chung, I.-Y., & Moon, S.-I. (2015). Tuning of the PI Controller Parameters of a PMSG Wind Turbine to Improve Control Performance under Various Wind Speeds. Energies, 8(2), 1406-1425. doi:10.3390/en8021406Widanagama Arachchige, L., Rajapakse, A., & Muthumuni, D. (2017). Implementation, Comparison and Application of an Average Simulation Model of a Wind Turbine Driven Doubly Fed Induction Generator. Energies, 10(11), 1726. doi:10.3390/en10111726Kim, C., Gui, Y., Zhao, H., & Kim, W. (2020). Coordinated LVRT Control for a Permanent Magnet Synchronous Generator Wind Turbine with Energy Storage System. Applied Sciences, 10(9), 3085. doi:10.3390/app10093085Das, K., Hansen, A. D., & Sørensen, P. E. (2016). Understanding IEC standard wind turbine models using SimPowerSystems. Wind Engineering, 40(3), 212-227. doi:10.1177/0309524x1664205

    Modelling Type 1 and 2 Wind Turbines based on IEC 61400-27-1: Transient Response under Voltage Dips

    Full text link
    [EN] Wind power plants depend greatly on weather conditions, thus being considered intermittent, uncertain and non-dispatchable. Due to the massive integration of this energy resource in the recent decades, it is important that transmission and distribution system operators are able to model their electrical behaviour in terms of steady-state power flow, transient dynamic stability, and short-circuit currents. Consequently, in 2015, the International Electrotechnical Commission published Standard IEC 61400-27-1, which includes generic models for wind power generation in order to estimate the electrical characteristics of wind turbines at the connection point. This paper presents, describes and details the models for wind turbine topologies Types 1 and 2 following IEC 61400-27-1 for electrical simulation purposes, including the values for the parameters for the different subsystems. A hardware-in-the-loop combined with a real-time simulator is also used to analyse the response of such wind turbine topologies under voltage dips. The evolution of active and reactive powers is discussed, together with the wind turbine rotor and generator rotational speeds.This work was partially supported by the Spanish Ministry of Economy and Competitiveness and the European Union -FEDER Funds, ENE2016-78214-C2-1-R-; and the Spanish Ministry of Education, Culture and Sports -ref. FPU16/04282-.García-Sánchez, TM.; Muñoz-Benavente, I.; Gómez-Lázaro, E.; Fernández-Guillamón, A. (2020). Modelling Type 1 and 2 Wind Turbines based on IEC 61400-27-1: Transient Response under Voltage Dips. Energies. 13(16):1-19. https://doi.org/10.3390/en13164078S1191316Fernández-Guillamón, A., Villena-Lapaz, J., Vigueras-Rodríguez, A., García-Sánchez, T., & Molina-García, Á. (2018). An Adaptive Frequency Strategy for Variable Speed Wind Turbines: Application to High Wind Integration Into Power Systems. Energies, 11(6), 1436. doi:10.3390/en11061436Fernández-Guillamón, A., Das, K., Cutululis, N. A., & Molina-García, Á. (2019). Offshore Wind Power Integration into Future Power Systems: Overview and Trends. Journal of Marine Science and Engineering, 7(11), 399. doi:10.3390/jmse7110399Fernández-Guillamón, A., Gómez-Lázaro, E., Muljadi, E., & Molina-García, Á. (2019). Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time. Renewable and Sustainable Energy Reviews, 115, 109369. doi:10.1016/j.rser.2019.109369Cardozo, C., van Ackooij, W., & Capely, L. (2018). Cutting plane approaches for frequency constrained economic dispatch problems. Electric Power Systems Research, 156, 54-63. doi:10.1016/j.epsr.2017.11.001Fernández-Guillamón, A., Martínez-Lucas, G., Molina-García, Á., & Sarasua, J. I. (2020). An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation. Energies, 13(13), 3369. doi:10.3390/en13133369Global Wind Report 2019https://gwec.net/global-wind-report-2019/Muñoz-Benavente, I., Hansen, A. D., Gómez-Lázaro, E., García-Sánchez, T., Fernández-Guillamón, A., & Molina-García, Á. (2019). Impact of Combined Demand-Response and Wind Power Plant Participation in Frequency Control for Multi-Area Power Systems. Energies, 12(9), 1687. doi:10.3390/en12091687Villena-Ruiz, R., Lorenzo-Bonache, A., Honrubia-Escribano, A., Jiménez-Buendía, F., & Gómez-Lázaro, E. (2019). Implementation of IEC 61400-27-1 Type 3 Model: Performance Analysis under Different Modeling Approaches. Energies, 12(14), 2690. doi:10.3390/en12142690Kumar, D., & Chatterjee, K. (2016). A review of conventional and advanced MPPT algorithms for wind energy systems. Renewable and Sustainable Energy Reviews, 55, 957-970. doi:10.1016/j.rser.2015.11.013Hansen, A. D., Iov, F., Blaabjerg, F., & Hansen, L. H. (2004). Review of Contemporary Wind Turbine Concepts and Their Market Penetration. Wind Engineering, 28(3), 247-263. doi:10.1260/0309524041590099Liang, X. (2017). Emerging Power Quality Challenges Due to Integration of Renewable Energy Sources. IEEE Transactions on Industry Applications, 53(2), 855-866. doi:10.1109/tia.2016.2626253Calif, R., & Schmitt, F. G. (2014). Multiscaling and joint multiscaling description of the atmospheric wind speed and the aggregate power output from a wind farm. Nonlinear Processes in Geophysics, 21(2), 379-392. doi:10.5194/npg-21-379-2014Calif, R., Schmitt, F. G., & Huang, Y. (2013). Multifractal description of wind power fluctuations using arbitrary order Hilbert spectral analysis. Physica A: Statistical Mechanics and its Applications, 392(18), 4106-4120. doi:10.1016/j.physa.2013.04.038Fernández‐Guillamón, A., Vigueras‐Rodríguez, A., & Molina‐García, Á. (2019). Analysis of power system inertia estimation in high wind power plant integration scenarios. IET Renewable Power Generation, 13(15), 2807-2816. doi:10.1049/iet-rpg.2019.0220Heredia, F.-J., Cuadrado, M. D., & Corchero, C. (2018). On optimal participation in the electricity markets of wind power plants with battery energy storage systems. Computers & Operations Research, 96, 316-329. doi:10.1016/j.cor.2018.03.004Zhang, W., & Fang, K. (2017). Controlling active power of wind farms to participate in load frequency control of power systems. IET Generation, Transmission & Distribution, 11(9), 2194-2203. doi:10.1049/iet-gtd.2016.1471Honrubia-Escribano, A., Gómez-Lázaro, E., Fortmann, J., Sørensen, P., & Martin-Martinez, S. (2018). Generic dynamic wind turbine models for power system stability analysis: A comprehensive review. Renewable and Sustainable Energy Reviews, 81, 1939-1952. doi:10.1016/j.rser.2017.06.005Moschitta, A., Carbone, P., & Muscas, C. (2011). Generalized Likelihood Ratio Test for Voltage Dip Detection. IEEE Transactions on Instrumentation and Measurement, 60(5), 1644-1653. doi:10.1109/tim.2011.2113110Moschitta, A., Carbone, P., & Muscas, C. (2012). Performance Comparison of Advanced Techniques for Voltage Dip Detection. IEEE Transactions on Instrumentation and Measurement, 61(5), 1494-1502. doi:10.1109/tim.2012.2183436Gallo, D., Landi, C., Luiso, M., & Fiorucci, E. (2014). Survey on Voltage Dip Measurements in Standard Framework. IEEE Transactions on Instrumentation and Measurement, 63(2), 374-387. doi:10.1109/tim.2013.2278996Ipinnimo, O., Chowdhury, S., Chowdhury, S. P., & Mitra, J. (2013). A review of voltage dip mitigation techniques with distributed generation in electricity networks. Electric Power Systems Research, 103, 28-36. doi:10.1016/j.epsr.2013.05.004Hossain, M. J., Pota, H. R., Ugrinovskii, V. A., & Ramos, R. A. (2010). Simultaneous STATCOM and Pitch Angle Control for Improved LVRT Capability of Fixed-Speed Wind Turbines. IEEE Transactions on Sustainable Energy, 1(3), 142-151. doi:10.1109/tste.2010.2054118Hossain, M. J., Pota, H. R., & Ramos, R. A. (2011). Robust STATCOM control for the stabilisation of fixed-speed wind turbines during low voltages. Renewable Energy, 36(11), 2897-2905. doi:10.1016/j.renene.2011.04.010Hossain, M. J., Pota, H. R., & Ramos, R. A. (2012). Improved low-voltage-ride-through capability of fixed-speed wind turbines using decentralised control of STATCOM with energy storage system. IET Generation, Transmission & Distribution, 6(8), 719. doi:10.1049/iet-gtd.2011.0537Wessels, C., Hoffmann, N., Molinas, M., & Fuchs, F. W. (2013). StatCom control at wind farms with fixed-speed induction generators under asymmetrical grid faults. IEEE Transactions on Industrial Electronics, 60(7), 2864-2873. doi:10.1109/tie.2012.2233694Obando-Montaño, A., Carrillo, C., Cidrás, J., & Díaz-Dorado, E. (2014). A STATCOM with Supercapacitors for Low-Voltage Ride-Through in Fixed-Speed Wind Turbines. Energies, 7(9), 5922-5952. doi:10.3390/en7095922Moghadasi, A., Sarwat, A., & Guerrero, J. M. (2016). A comprehensive review of low-voltage-ride-through methods for fixed-speed wind power generators. Renewable and Sustainable Energy Reviews, 55, 823-839. doi:10.1016/j.rser.2015.11.020Heydari-doostabad, H., Khalghani, M. R., & Khooban, M. H. (2016). A novel control system design to improve LVRT capability of fixed speed wind turbines using STATCOM in presence of voltage fault. International Journal of Electrical Power & Energy Systems, 77, 280-286. doi:10.1016/j.ijepes.2015.11.011Fortmann, J., Engelhardt, S., Kretschmann, J., Feltes, C., & Erlich, I. (2014). New Generic Model of DFG-Based Wind Turbines for RMS-Type Simulation. IEEE Transactions on Energy Conversion, 29(1), 110-118. doi:10.1109/tec.2013.2287251Goksu, O., Altin, M., Fortmann, J., & Sorensen, P. E. (2016). Field Validation of IEC 61400-27-1 Wind Generation Type 3 Model With Plant Power Factor Controller. IEEE Transactions on Energy Conversion, 31(3), 1170-1178. doi:10.1109/tec.2016.2540006Honrubia-Escribano, A., Jiménez-Buendía, F., Gómez-Lázaro, E., & Fortmann, J. (2016). Validation of Generic Models for Variable Speed Operation Wind Turbines Following the Recent Guidelines Issued by IEC 61400-27. Energies, 9(12), 1048. doi:10.3390/en9121048Honrubia-Escribano, A., Jimenez-Buendia, F., Gomez-Lazaro, E., & Fortmann, J. (2018). Field Validation of a Standard Type 3 Wind Turbine Model for Power System Stability, According to the Requirements Imposed by IEC 61400-27-1. IEEE Transactions on Energy Conversion, 33(1), 137-145. doi:10.1109/tec.2017.2737703Lorenzo-Bonache, A., Honrubia-Escribano, A., Jiménez-Buendía, F., Molina-García, Á., & Gómez-Lázaro, E. (2017). Generic Type 3 Wind Turbine Model Based on IEC 61400-27-1: Parameter Analysis and Transient Response under Voltage Dips. Energies, 10(9), 1441. doi:10.3390/en10091441Honrubia-Escribano, A., Jiménez-Buendía, F., Sosa-Avendaño, J. L., Gartmann, P., Frahm, S., Fortmann, J., … Gómez-Lázaro, E. (2019). Fault-Ride Trough Validation of IEC 61400-27-1 Type 3 and Type 4 Models of Different Wind Turbine Manufacturers. Energies, 12(16), 3039. doi:10.3390/en12163039Wang, L., Zhang, Z., Long, H., Xu, J., & Liu, R. (2017). Wind Turbine Gearbox Failure Identification With Deep Neural Networks. IEEE Transactions on Industrial Informatics, 13(3), 1360-1368. doi:10.1109/tii.2016.2607179Hansen, A. D., & Hansen, L. H. (2007). Wind turbine concept market penetration over 10 years (1995–2004). Wind Energy, 10(1), 81-97. doi:10.1002/we.210IEC 61400-27-1. Electrical Simulation Models—Wind Turbines; Technical Reporthttps://webstore.iec.ch/publication/21811Vázquez-Hernández, C., Serrano-González, J., & Centeno, G. (2017). A Market-Based Analysis on the Main Characteristics of Gearboxes Used in Onshore Wind Turbines. Energies, 10(11), 1686. doi:10.3390/en10111686Duong, M., Grimaccia, F., Leva, S., Mussetta, M., & Le, K. (2015). Improving Transient Stability in a Grid-Connected Squirrel-Cage Induction Generator Wind Turbine System Using a Fuzzy Logic Controller. Energies, 8(7), 6328-6349. doi:10.3390/en8076328Cheng, M., & Zhu, Y. (2014). The state of the art of wind energy conversion systems and technologies: A review. Energy Conversion and Management, 88, 332-347. doi:10.1016/j.enconman.2014.08.037Pinar Pérez, J. M., García Márquez, F. P., Tobias, A., & Papaelias, M. (2013). Wind turbine reliability analysis. Renewable and Sustainable Energy Reviews, 23, 463-472. doi:10.1016/j.rser.2013.03.018Sumathi, S., Ashok Kumar, L., & Surekha, P. (2015). Wind Energy Conversion Systems. Green Energy and Technology, 247-307. doi:10.1007/978-3-319-14941-7_4Fernández-Guillamón, A., Sarasúa, J. I., Chazarra, M., Vigueras-Rodríguez, A., Fernández-Muñoz, D., & Molina-García, Á. (2020). Frequency control analysis based on unit commitment schemes with high wind power integration: A Spanish isolated power system case study. International Journal of Electrical Power & Energy Systems, 121, 106044. doi:10.1016/j.ijepes.2020.106044Liu, J., Gao, Y., Geng, S., & Wu, L. (2017). Nonlinear Control of Variable Speed Wind Turbines via Fuzzy Techniques. IEEE Access, 5, 27-34. doi:10.1109/access.2016.2599542Margaris, I. D., Hansen, A. D., Sørensen, P., & Hatziargyriou, N. D. (2010). Illustration of Modern Wind Turbine Ancillary Services. Energies, 3(6), 1290-1302. doi:10.3390/en3061290Wan, S., Cheng, K., Sheng, X., & Wang, X. (2019). Characteristic Analysis of DFIG Wind Turbine under Blade Mass Imbalance Fault in View of Wind Speed Spatiotemporal Distribution. Energies, 12(16), 3178. doi:10.3390/en12163178Boukhezzar, B., & Siguerdidjane, H. (2011). Nonlinear Control of a Variable-Speed Wind Turbine Using a Two-Mass Model. IEEE Transactions on Energy Conversion, 26(1), 149-162. doi:10.1109/tec.2010.2090155Chu, Yuan, Hu, Pan, & Pan. (2019). Comparative Analysis of Identification Methods for Mechanical Dynamics of Large-Scale Wind Turbine. Energies, 12(18), 3429. doi:10.3390/en12183429Villena-Ruiz, R., Honrubia-Escribano, A., Fortmann, J., & Gómez-Lázaro, E. (2020). Field validation of a standard Type 3 wind turbine model implemented in DIgSILENT-PowerFactory following IEC 61400-27-1 guidelines. International Journal of Electrical Power & Energy Systems, 116, 105553. doi:10.1016/j.ijepes.2019.105553Ekanayake, J. B., Holdsworth, L., & Jenkins, N. (2003). Comparison of 5th order and 3rd order machine models for doubly fed induction generator (DFIG) wind turbines. Electric Power Systems Research, 67(3), 207-215. doi:10.1016/s0378-7796(03)00109-3Brandl, R. (2017). Operational Range of Several Interface Algorithms for Different Power Hardware-In-The-Loop Setups. Energies, 10(12), 1946. doi:10.3390/en10121946Matar, M., Karimi, H., Etemadi, A., & Iravani, R. (2012). A High Performance Real-Time Simulator for Controllers Hardware-in-the-Loop Testing. Energies, 5(6), 1713-1733. doi:10.3390/en506171

    Real-time monitoring system for shelf life estimation of fruit and vegetables

    Get PDF
    The control of the main environmental factors that influence the quality of perishable products is one of the main challenges of the food industry. Temperature is the main factor affecting quality, but other factors like relative humidity and gas concentrations (mainly C2H4, O2 and CO2) also play an important role in maintaining the postharvest quality of horticultural products. For this reason, monitoring such environmental factors is a key procedure to assure quality throughout shelf life and evaluate losses. Therefore, in order to estimate the quality losses that a perishable product can suffer during storage and transportation, a real-time monitoring system has been developed. This system can be used in all post-harvest steps thanks to its Wi-Fi wireless communication architecture. Several laboratory trials were conducted, using lettuce as a model, to determine quality-rating scales during shelf life under different storage temperature conditions. As a result, a multiple non-linear regression (MNLR) model is proposed relating the temperature and the maximum shelf life. This proposed model would allow to predict the days the commodities will reduce their theoretical shelf-life when an improper temperature during storage or in-transit occurs. The system, developed as a sensor-based tool, has been tested during several land transportation trips around Europe.The authors are grateful to Fruca Marketing S.L. for providing the lettuce used in this research, and to Transportes Directos del Segura SL and Transportes Mesa SL for the logistic support. We also are grateful to Miriam Montoya Gómez for the translation services

    Tectonic Control on Sedimentary Dynamics in Intraplate Oceanic Settings: A Geomorphological Image of the Eastern Canary Basin and Insights on its Middle-Upper Miocene to Quaternary Volcano-Tectonic-Sedimentary Evolution

    Get PDF
    This paper integrates sedimentary, tectonic and volcanic geological processes inside a model of volcano-tectonic activity in oceanic intraplate domains related to rifted continental margins. The study case, the eastern Canary Basin (NE Atlantic), is one of the few places in the world where giant MDTs and Quaternary volcanic and hydrothermal edifices take place in intraplate domains. In this paper, we analyse how two structural systems (WNW-ESE and NNE-SSW) matching with the oceanic fabric control the location of volcanic systems, seafloor tectonic reliefs and subsequently the distribution of main sedimentary systems. Linear turbidite channels, debris flow lobes and the lateral continuity of structural and volcanic reliefs follow a WNW-ESE trend matching the tracks of the oceanic fracture zones. Furthermore, escarpments, anticline axes and volcanic ridges follow a NNE-SSW trend matching normal faults delimiting blocks of oceanic basement. The morpho-structural analysis of all the above geomorphological features shows evidence of a volcanic and tectonic activity from the middle–upper Miocene to the Lower–Middle Pleistocene spread over the whole of the eastern Canary Basin that reached the western Canary Islands. This reactivation changes the paradigm in the seamount province of Canary Islands reported inactive since Cretaceous. A tecto-sedimentary model is proposed for this period of time that can be applied in other intraplate domains of the world. A tectonic uplift in the study area with a thermal anomaly triggered volcanic and hydrothermal activity and the subsequent flank collapse and emplacement of mass transport deposits on the Western Canary Slope. Furthermore, this uplift reactivated the normal basement faults, both trending WNW-ESE and NNE-SSW, generating folds and faults that control the location of turbidite channels, escarpments, mass transport deposits and volcanic edifices.Versión del edito

    Ansiedad entre cuidadores de pacientes con Enfermedad Pulmonar Obstructiva Crónica tras el alta hospitalaria

    Get PDF
    Objective: To identify the factors that influence changes in caregivers anxiety status three months after discharge for acute exacerbation of Chronic Obstructive Pulmonary Disease (COPD).Methodology: Longitudinal study. Participants included 87 caregivers of patients hospitalized for acute exacerbation of COPD. Anxiety was measured at the time of hospitalization and three months after discharge. We measured factors from four domains: context of care, caregiving demands, caregiver resources, and patient characteristics. We used multiple univariate and multivariate logistic regressions to determine changes in anxiety three months later. Univariate and multivariate multiple logistic regressions were used to determine changes in anxiety three months later.Results: A total of 57.5% of caregivers reported anxiety at the time of hospitalization. Of these, 44% had a remission of their anxiety three months after discharge. However, 22% of caregivers who had not experienced anxiety at the hospitalization became anxious at 3 months. The severity of COPD and not receiving help from another caregiver decreased the likelihood of remission of anxiety. Moderately high overload increases the likelihood of experiencing anxiety symptoms.Conclusions: The perception of anxious symptoms is dynamic. Caregivers are likely to recover from anxiety when they receive help from another caregiver and if the patient they are caring for does not have severe COPD.Objetivo: Identificar los factores que influyen en cambios en la ansiedad de los cuidadores tres meses después del alta hospitalaria por exacerbación aguda de la Enfermedad Pulmonar Obstructiva Crónica (EPOC).  Metodología: Estudio longitudinal. Participaron 87 cuidadores de pacientes hospitalizados por exacerbación aguda de EPOC. Se midió la ansiedad en el momento de la hospitalización y tres meses después del alta. Además, se midieron potenciales factores asociados a su cambio en cuatro dominios: Contexto del cuidado, demandas del cuidado, recursos y características del paciente. Utilizamos regresiones logísticas múltiples univariadas y multivariadas para determinar los cambios en la ansiedad tres meses después. Resultados: Presentaron ansiedad en el momento de la hospitalización el 57,5% de los cuidadores. De ellos, el 44% había remitido su ansiedad tres meses después del alta hospitalaria. Sin embargo, el 22% de los cuidadores quienes no habían presentado ansiedad en el momento de la hospitalización se mostraron ansiosos a los 3 meses. La gravedad de la EPOC y no recibir apoyo de otro cuidador disminuyó las probabilidades de remisión de la ansiedad. La sobrecarga moderadamente alta incrementa las probabilidades de presentar  nuevos síntomas de ansiedad. Conclusiones: La percepción de los síntomas de la ansiedad es dinámica. Los cuidadores pueden recuperarse si reciben ayuda de otro cuidador o si el paciente al que cuidan no está en un estado severo de EPOC

    Morfometría de montículos submarinos del talud inferior del margen continental canario (O de las Islas Canarias): Análisis basado en un MDT

    Get PDF
    We present a morphometric analysis of 41 mounded edifices located on the seafloor to the west of Canary Islands, using a 150 m resolution DEM and very high-resolution seismic profiles. In order to carry out morphometric computation a set of variables (slope, size and shape) were calculated using ArcGIS Analyst tools. A mapping cluster has been generated using Grouping Analyst ArcGIS Statistics toolset where seven differents morphometric groups have been distinguished. Four main types of edifice shapes have been identified within the seven morphometric groups. The first type is a single giant dome elevation that can be considered as an outlier mound. The second type is the most frequent and can be considered as the standard type mound on the Canary continental slope due to its intermediate morphology. They show extrusive seismic characteristics in seismic profiles. The third type is morphologically derived from type 2, representing steeper and higher mounds related with extrusive processes whereas the fourth type represents smoother and flatter mounds related to faulting. This study shows that an elaborated geomorphometry resolves between types of extrusive edifices from those under tectonic conditionsVersión del edito

    Acute and subchronic 90-days toxicity assessment of propyl-propane-thiosulfinate (PTS) in rats

    Get PDF
    The organosulfur compounds (OSC) extracted from Allium spp. exhibit antibacterial, antifungal, and antioxidant properties. The agri-food industry is taking advantage of these properties by using them as natural feed and food additives. In the present work, an acute and a subchronic 90-days toxicity studies have been conducted for the first time to assess the safety of the OSC propyl-propane-thiosulfinate (PTS). Both studies were carried out following the Organization for Economic Co-operation and Development test guidelines (425 and 408, respectively). The acute study provided a maximum tolerated dose (MTD) of 175 mg/kg and the subchronic study established the Non Observed Adverse Effect Level (NOAEL) ≥ 55 mg/kg body weight (b.w.)/day in both sexes. In addition, the subchronic study performed on rats exposed to 14, 28 and 55 mg/kg b.w./day PTS, revealed no changes in any of the hematological parameters measured as well as no differences in body weight and water/food consumption. However, biochemical parameters were altered in some groups, although they were not biologically significant (Ca2+ in female rats, and the thyroids hormones T3 and T4 in rat males). Furthermore, the histopathological assessment evidenced no abnormality on the gastrointestinal, respiratory, lymphoid, urinary, circulatory, nervous, musculoskeletal, and reproductive systems.Ministerio de Ciencia e Innovación RTC-2017-6199-2Junta de Andalucía AT 2017–5323 and P18-TP-214
    corecore