42 research outputs found

    Exercising heart failure patients:cardiac protection through preservation of mitochondrial function and substrate utilization?

    Get PDF
    Current heart failure (HF) therapy remains unable to substantially improve exercise capacity. Studies have shown that exercise training has beneficial effects on the heart in both health and disease. How mitochondria respond to exercise in this setting has, however, received less attention in literature. These beneficial effects may include protective changes in mitochondrial function and adaptations in substrate utilization. This review describes exercise-induced changes in cardiac metabolism, including changes in mitochondrial function and substrate utilization and their effects on cardiac function. We conclude that exercising HF patients can improve mitochondrial function and optimize substrate utilization, eventually improving or restoring cardiac function. This suggests that exercise itself should be incorporated in the HF treatment plan, to improve cardiac function and in term exercise capacity. Extending knowledge on mechanisms by which exercise exerts protective effects could potentially lead to development of therapies directed at improving mitochondrial function and substrate utilization in HF.</p

    Exercise:a molecular tool to boost muscle growth and mitochondrial performance in heart failure?

    Get PDF
    Impaired exercise capacity is the key symptom of heart failure (HF) and is associated with reduced quality of life and higher mortality rates. Unfortunately, current therapies, although generally lifesaving, have only small or marginal effects on exercise capacity. Specific strategies to alleviate exercise intolerance may improve quality of life, while possibly improving prognosis as well. There is overwhelming evidence that physical exercise improves performance in cardiac and skeletal muscles in health and disease. Unravelling the mechanistic underpinnings of exercise-induced improvements in muscle function could provide targets that will allow us to boost exercise performance in HF. With the current review we discuss: (i) recently discovered signalling pathways that govern physiological muscle growth as well as mitochondrial quality control mechanisms that underlie metabolic adaptations to exercise; (ii) the mechanistic underpinnings of exercise intolerance in HF and the benefits of exercise in HF patients on molecular, functional and prognostic levels; and (iii) potential molecular therapeutics to improve exercise performance in HF. We propose that novel molecular therapies to boost adaptive muscle growth and mitochondrial quality control in HF should always be combined with some form of exercise training.</p

    Could SGLT2 Inhibitors Improve Exercise Intolerance in Chronic Heart Failure?

    Get PDF
    Despite the constant improvement of therapeutical options, heart failure (HF) remains associated with high mortality and morbidity. While new developments in guideline-recommended therapies can prolong survival and postpone HF hospitalizations, impaired exercise capacity remains one of the most debilitating symptoms of HF. Exercise intolerance in HF is multifactorial in origin, as the underlying cardiovascular pathology and reactive changes in skeletal muscle composition and metabolism both contribute. Recently, sodium-related glucose transporter 2 (SGLT2) inhibitors were found to improve cardiovascular outcomes significantly. Whilst much effort has been devoted to untangling the mechanisms responsible for these cardiovascular benefits of SGLT2 inhibitors, little is known about the effect of SGLT2 inhibitors on exercise performance in HF. This review provides an overview of the pathophysiological mechanisms that are responsible for exercise intolerance in HF, elaborates on the potential SGLT2-inhibitor-mediated effects on these phenomena, and provides an up-to-date overview of existing studies on the effect of SGLT2 inhibitors on clinical outcome parameters that are relevant to the assessment of exercise capacity. Finally, current gaps in the evidence and potential future perspectives on the effects of SGLT2 inhibitors on exercise intolerance in chronic HF are discussed

    A New Approach to Energy Calculation of Road Accidents against Fixed Small Section Elements Based on Close-Range Photogrammetry

    Get PDF
    [EN] This paper presents a new approach for energetic analyses of traffic accidents against fixed road elements using close-range photogrammetry. The main contributions of the developed approach are related to the quality of the 3D photogrammetric models, which enable objective and accurate energetic analyses through the in-house tool CRASHMAP. As a result, security forces can reconstruct the accident in a simple and comprehensive way without requiring spreadsheets or external tools, and thus avoid the subjectivity and imprecisions of the traditional protocol. The tool has already been validated, and is being used by the Local Police of Salamanca (Salamanca, Spain) for the resolution of numerous accidents. In this paper, a real accident of a car against a fixed metallic pole is analysed, and significant discrepancies are obtained between the new approach and the traditional protocol of data acquisition regarding collision speed and absorbed energy.S

    A new approach to energy calculation of road accidents against fixed small section elements based on close-range Photogrammetry

    Get PDF
    This paper presents a new approach for energetic analyses of traffic accidents against fixed road elements using close-range photogrammetry. The main contributions of the developed approach are related to the quality of the 3D photogrammetric models, which enable objective and accurate energetic analyses through the in-house tool CRASHMAP. As a result, security forces can reconstruct the accident in a simple and comprehensive way without requiring spreadsheets or external tools, and thus avoid the subjectivity and imprecisions of the traditional protocol. The tool has already been validated, and is being used by the Local Police of Salamanca (Salamanca, Spain) for the resolution of numerous accidents. In this paper, a real accident of a car against a fixed metallic pole is analysed, and significant discrepancies are obtained between the new approach and the traditional protocol of data acquisition regarding collision speed and absorbed energ

    ATPase Inhibitory Factor-1 Disrupts Mitochondrial Ca2+ Handling and Promotes Pathological Cardiac Hypertrophy through CaMKIIδ

    Get PDF
    ATPase inhibitory factor-1 (IF1) preserves cellular ATP under conditions of respiratory collapse, yet the function of IF1 under normal respiring conditions is unresolved. We tested the hypothesis that IF1 promotes mitochondrial dysfunction and pathological cardiomyocyte hypertrophy in the context of heart failure (HF). Methods and results: Cardiac expression of IF1 was increased in mice and in humans with HF, downstream of neurohumoral signaling pathways and in patterns that resembled the fetal-like gene program. Adenoviral expression of wild-type IF1 in primary cardiomyocytes resulted in pathological hypertrophy and metabolic remodeling as evidenced by enhanced mitochondrial oxidative stress, reduced mitochondrial respiratory capacity, and the augmentation of extramitochondrial glycolysis. Similar perturbations were observed with an IF1 mutant incapable of binding to ATP synthase (E55A mutation), an indication that these effects occurred independent of binding to ATP synthase. Instead, IF1 promoted mitochondrial fragmentation and compromised mitochondrial Ca2+ handling, which resulted in sarcoplasmic reticulum Ca2+ overloading. The effects of IF1 on Ca2+ handling were associated with the cytosolic activation of calcium-calmodulin kinase II (CaMKII) and inhibition of CaMKII or co-expression of catalytically dead CaMKIIδC was sufficient to prevent IF1 induced pathological hypertrophy. Conclusions: IF1 represents a novel member of the fetal-like gene program that contributes to mitochondrial dysfunction and pathological cardiac remodeling in HF. Furthermore, we present evidence for a novel, ATP-synthase-independent, role for IF1 in mitochondrial Ca2+ handling and mitochondrial-to-nuclear crosstalk involving CaMKII

    Persistent Pulmonary Hypertension in Corrected Valvular Heart Disease: Hemodynamic Insights and Long-Term Survival.

    Get PDF
    Background The determinants and consequences of pulmonary hypertension after successfully corrected valvular heart disease remain poorly understood. We aim to clarify the hemodynamic bases and risk factors for mortality in patients with this condition. Methods and Results We analyzed long-term follow-up data of 222 patients with pulmonary hypertension and valvular heart disease successfully corrected at least 1 year before enrollment who had undergone comprehensive hemodynamic and imaging characterization as per the SIOVAC (Sildenafil for Improving Outcomes After Valvular Correction) clinical trial. Median (interquartile range) mean pulmonary pressure was 37 mm Hg (32-44 mm Hg) and pulmonary artery wedge pressure was 23 mm Hg (18-26 mm Hg). Most patients were classified either as having combined precapillary and postcapillary or isolated postcapillary pulmonary hypertension. After a median follow-up of 4.5 years, 91 deaths accounted for 4.21 higher-than-expected mortality in the age-matched population. Risk factors for mortality were male sex, older age, diabetes mellitus, World Health Organization functional class III and higher pulmonary vascular resistance-either measured by catheterization or approximated from ultrasound data. Higher pulmonary vascular resistance was related to diabetes mellitus and smaller residual aortic and mitral valve areas. In turn, the latter correlated with prosthetic nominal size. Six-month changes in the composite clinical score and in the 6-minute walk test distance were related to survival. Conclusions Persistent valvular heart disease-pulmonary hypertension is an ominous disease that is almost universally associated with elevated pulmonary artery wedge pressure. Pulmonary vascular resistance is a major determinant of mortality in this condition and is related to diabetes mellitus and the residual effective area of the corrected valve. These findings have important implications for individualizing valve correction procedures. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT00862043.This study was funded by the Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Spain, the European Union–European Regional Development Fund (EC07/90772 and PI19/00649), and the Consorcio de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV).S

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    The evolution of the ventilatory ratio is a prognostic factor in mechanically ventilated COVID-19 ARDS patients

    Get PDF
    Background: Mortality due to COVID-19 is high, especially in patients requiring mechanical ventilation. The purpose of the study is to investigate associations between mortality and variables measured during the first three days of mechanical ventilation in patients with COVID-19 intubated at ICU admission. Methods: Multicenter, observational, cohort study includes consecutive patients with COVID-19 admitted to 44 Spanish ICUs between February 25 and July 31, 2020, who required intubation at ICU admission and mechanical ventilation for more than three days. We collected demographic and clinical data prior to admission; information about clinical evolution at days 1 and 3 of mechanical ventilation; and outcomes. Results: Of the 2,095 patients with COVID-19 admitted to the ICU, 1,118 (53.3%) were intubated at day 1 and remained under mechanical ventilation at day three. From days 1 to 3, PaO2/FiO2 increased from 115.6 [80.0-171.2] to 180.0 [135.4-227.9] mmHg and the ventilatory ratio from 1.73 [1.33-2.25] to 1.96 [1.61-2.40]. In-hospital mortality was 38.7%. A higher increase between ICU admission and day 3 in the ventilatory ratio (OR 1.04 [CI 1.01-1.07], p = 0.030) and creatinine levels (OR 1.05 [CI 1.01-1.09], p = 0.005) and a lower increase in platelet counts (OR 0.96 [CI 0.93-1.00], p = 0.037) were independently associated with a higher risk of death. No association between mortality and the PaO2/FiO2 variation was observed (OR 0.99 [CI 0.95 to 1.02], p = 0.47). Conclusions: Higher ventilatory ratio and its increase at day 3 is associated with mortality in patients with COVID-19 receiving mechanical ventilation at ICU admission. No association was found in the PaO2/FiO2 variation
    corecore