11 research outputs found

    Glutathione reductase gsr-1 is an essential gene required for Caenorhabditis elegans early embryonic development

    Get PDF
    Glutathione is the most abundant thiol in the vast majority of organisms and is maintained in its reduced form by the flavoenzyme glutathione reductase. In this work, we describe the genetic and functional analysis of the Caenorhabditis elegans gsr-1 gene that encodes the only glutathione reductase protein in this model organism. By using green fluorescent protein reporters we demonstrate that gsr-1 produces two GSR-1 isoforms, one located in the cytoplasm and one in the mitochondria. gsr-1 loss of function mutants display a fully penetrant embryonic lethal phenotype characterized by a progressive and robust cell division delay accompanied by an aberrant distribution of interphasic chromatin in the periphery of the cell nucleus. Maternally expressed GSR-1 is sufficient to support embryonic development but these animals are short-lived, sensitized to chemical stress and have increased mitochondrial fragmentation and lower mitochondrial DNA content. Furthermore, the embryonic lethality of gsr-1 worms is prevented by restoring GSR-1 activity in the cytoplasm but not in mitochondria. Given the fact that the thioredoxin redox systems are dispensable in C. elegans, our data support a prominent role of the glutathione reductase/glutathione pathway in maintaining redox homeostasis in the nematode

    Loss of glutathione redox homeostasis impairs proteostasis by inhibiting autophagy-dependent protein degradation

    Get PDF
    In the presence of aggregation-prone proteins, the cytosol and endoplasmic reticulum (ER) undergo a dramatic shift in their respective redox status, with the cytosol becoming more oxidized and the ER more reducing. However, whether and how changes in the cellular redox status may affect protein aggregation is unknown. Here, we show that C. elegans loss-of-function mutants for the glutathione reductase gsr-1 gene enhance the deleterious phenotypes of heterologous human, as well as endogenous worm aggregation-prone proteins. These effects are phenocopied by the GSH-depleting agent diethyl maleate. Additionally, gsr-1 mutants abolish the nuclear translocation of HLH-30/TFEB transcription factor, a key inducer of autophagy, and strongly impair the degradation of the autophagy substrate p62/SQST-1::GFP, revealing glutathione reductase may have a role in the clearance of protein aggregates by autophagy. Blocking autophagy in gsr-1 worms expressing aggregation-prone proteins results in strong synthetic developmental phenotypes and lethality, supporting the physiological importance of glutathione reductase in the regulation of misfolded protein clearance. Furthermore, impairing redox homeostasis in both yeast and mammalian cells induces toxicity phenotypes associated with protein aggregation. Together, our data reveal that glutathione redox homeostasis may be central to proteostasis maintenance through autophagy regulation.Ministerio de Economía y Competitividad BFU2016–78265-P, BFU2016– 79313-P, MDM-2016–0687, BFU2015–64408-PInstituto de Salud Carlos III PI11/ 00072, CPII16/00004, PI14/00949, PI17/0001

    Loss of glutathione redox homeostasis impairs proteostasis by inhibiting autophagy-dependent protein degradation

    Get PDF
    In the presence of aggregation-prone proteins, the cytosol and endoplasmic reticulum (ER) undergo a dramatic shift in their respective redox status, with the cytosol becoming more oxidized and the ER more reducing. However, whether and how changes in the cellular redox status may affect protein aggregation is unknown. Here, we show that C. elegans loss-of-function mutants for the glutathione reductase gsr-1 gene enhance the deleterious phenotypes of heterologous human, as well as endogenous worm aggregation-prone proteins. These effects are phenocopied by the GSH-depleting agent diethyl maleate. Additionally, gsr-1 mutants abolish the nuclear translocation of HLH-30/TFEB transcription factor, a key inducer of autophagy, and strongly impair the degradation of the autophagy substrate p62/SQST-1::GFP, revealing glutathione reductase may have a role in the clearance of protein aggregates by autophagy. Blocking autophagy in gsr-1 worms expressing aggregation-prone proteins results in strong synthetic developmental phenotypes and lethality, supporting the physiological importance of glutathione reductase in the regulation of misfolded protein clearance. Furthermore, impairing redox homeostasis in both yeast and mammalian cells induces toxicity phenotypes associated with protein aggregation. Together, our data reveal that glutathione redox homeostasis may be central to proteostasis maintenance through autophagy regulation.. The Spanish Ministry of Economy and Competitiveness supported EF-S and VG (BFU2016–78265-P), PA (BFU2016– 79313-P and MDM-2016–0687), and AM-V (BFU2015–64408-P). AM-V was also supported by the Instituto de Salud Carlos III (PI11/ 00072) and RPV-M (CPII16/00004, PI14/00949 and PI17/00011). All projects were cofinanced by the Fondo Social Europeo (FEDER). AM-V is a member of the GENIE and EU-ROS Cost Actions of the European Union and RPV-M is a Marie Curie Fellow (CIG322034, EU)

    C. elegans Integrator complex: Identification and analysis of a role beyond snRNA processing

    Get PDF
    [EN] In this work we described the C. elegans Integrator complex and the involvement of its INTS-6 subunit in DNA damage response. The Integrator complex, which is comprised of at least fourteen subunits in human cells, is responsible for snRNA 3’-end processing. In addition, some of its subunits are involved in other steps of the RNAP II transcription cycle or other biological processes such as development or DNA repair. Here, we demonstrated that the C. elegans Integrator complex is comprised of, at least, eleven subunits (INTS-1, INTS-2, INTS-3, INTS-4, INTS-5, INTS-6, INTS-7, INTS-8, INTS-9, INTS-11 and INTS-13). RNAi knockdown of any subunit leads to 3’- end processing defects that result in the formation of chimeric RNAs composed of an snRNA and an mRNA, which we have called “sn-mRNAs”’. We also detected these chimeric “sn-mRNAs” upon gamma radiation. Finally, involvement of INTS-6 in DNA repair via the HR pathway was demosnstrated and we suggested a link between INTS-6 in DSB DNA repair and the formation of chimeric “sn-mRNAs”

    The embryonic cell lineage of Caenorhabditis elegans: A modern hieroglyph: The best way to acquire knowledge in Developmental Biology is to learn how this knowledge was derived

    Get PDF
    Nowadays, in the Internet databases era, certain knowledge is being progressively lost. This knowledge, which we feel is essential and should be acquired through education, is the understanding of how the pioneer researchers faced major questions in their field and made their discoveries.Peer Reviewe

    Multiple functions of the noncanonical Wnt pathway

    No full text
    Thirty years after the identification of WNTs, understanding of their signal transduction pathways continues to expand. Here, we review recent advances in characterizing the Wnt-dependent signaling pathways in Caenorhabditis elegans linking polar signals to rearrangements of the cytoskeleton in different developmental processes, such as proper mitotic spindle orientation, cell migration, and engulfment of apoptotic corpses. In addition to the well-described transcriptional outputs of the canonical and noncanonical Wnt pathways, new branches regulating nontranscriptional outputs that control RAC (Ras related GTPase) activity are also discussed. These findings suggest that Wnt signaling is a master regulator not only of development, but also of cell polarization. © 2013 Elsevier Ltd.We thank Aimee Kao and Iain Johnstone for comments, and the Rioja Salud Foundation and Ministerio de Economía y Competitividad, Spain for funding (Grants BFU2010-21794, BFU2011-28274, and Consolider CSD2007-00015).Peer Reviewe

    Caenorhabditis elegans as a platform to study the mechanism of action of synthetic antitumor lipids

    No full text
    Drugs capable of specifically recognizing and killing cancer cells while sparing healthy cells are of great interest in anti-cancer therapy. An example of such a drug is edelfosine, the prototype molecule of a family of synthetic lipids collectively known as antitumor lipids (ATLs). A better understanding of the selectivity and the mechanism of action of these compounds would lead to better anticancer treatments. Using Caenorhabditis elegans, we modeled key features of the ATL selectivity against cancer cells. Edelfosine induced a selective and direct killing action on C. elegans embryos, which was dependent on cholesterol, without affecting adult worms and larvae. Distinct ATLs ranked differently in their embryonic lethal effect with edelfosine > perifosine > erucylphosphocholine >> miltefosine. Following a biased screening of 57 C. elegans mutants we found that inactivation of components of the insulin/IGF-1 signaling pathway led to resistance against the ATL edelfosine in both C. elegans and human tumor cells. This paper shows that C. elegans can be used as a rapid platform to facilitate ATL research and to further understand the mechanism of action of edelfosine and other synthetic ATLs.This work was supported by grants from the Spanish Ministerio de Ciencia e Innovación (SAF2011–30518), Spanish Ministerio de Economía y Competitividad (RD12/0036/0065, Red Temática de Investigación Cooperativa en Cáncer, Instituto de Salud Carlos III, cofunded by the Fondo Europeo de Desarrollo Regional of the European Union), European Community’s Seventh Framework Program FP7-2007-2013 (grant HEALTH-F2–2011–256986, PANACREAS), and Junta de Castilla y León (CSI052A11–2). ASB was supported by the CSIC JAE-Doc program.Peer Reviewe

    Disruption of the Caenorhabditis elegans Integrator complex triggers a non-conventional transcriptional mechanism beyond snRNA genes.

    Get PDF
    Gene expression is generally regulated by recruitment of transcription factors and RNA polymerase II (RNAP II) to specific sequences in the gene promoter region. The Integrator complex mediates processing of small nuclear RNAs (snRNAs) as well as the initiation and release of paused RNAP II at specific genes in response to growth factors. Here we show that in C. elegans, disruption of the Integrator complex leads to transcription of genes located downstream of the snRNA loci via a non-conventional transcription mechanism based on the lack of processing of the snRNAs. RNAP II read-through generates long chimeric RNAs containing snRNA, the intergenic region and the mature mRNA of the downstream gene located in sense. These chimeric sn-mRNAs remain as untranslated long non-coding RNAs, in the case of U1- and U2-derived sn-mRNAs, but can be translated to proteins in the case of SL-derived sn-mRNAs. The transcriptional effect caused by disruption of the Integrator complex is not restricted to genes located downstream of the snRNA loci but also affects key regulators of signal transduction such as kinases and phosphatases. Our findings highlight that these transcriptional alterations may be behind the correlation between mutations in the Integrator complex and tumor transformation

    Multiomics analysis couples mRNA turnover and translational control of glutamine metabolism to the differentiation of the activated CD4+ T cell.

    Get PDF
    The ZFP36 family of RNA-binding proteins acts post-transcriptionally to repress translation and promote RNA decay. Studies of genes and pathways regulated by the ZFP36 family in CD4+ T cells have focussed largely on cytokines, but their impact on metabolic reprogramming and differentiation is unclear. Using CD4+ T cells lacking Zfp36 and Zfp36l1, we combined the quantification of mRNA transcription, stability, abundance and translation with crosslinking immunoprecipitation and metabolic profiling to determine how they regulate T cell metabolism and differentiation. Our results suggest that ZFP36 and ZFP36L1 act directly to limit the expression of genes driving anabolic processes by two distinct routes: by targeting transcription factors and by targeting transcripts encoding rate-limiting enzymes. These enzymes span numerous metabolic pathways including glycolysis, one-carbon metabolism and glutaminolysis. Direct binding and repression of transcripts encoding glutamine transporter SLC38A2 correlated with increased cellular glutamine content in ZFP36/ZFP36L1-deficient T cells. Increased conversion of glutamine to α-ketoglutarate in these cells was consistent with direct binding of ZFP36/ZFP36L1 to Gls (encoding glutaminase) and Glud1 (encoding glutamate dehydrogenase). We propose that ZFP36 and ZFP36L1 as well as glutamine and α-ketoglutarate are limiting factors for the acquisition of the cytotoxic CD4+ T cell fate. Our data implicate ZFP36 and ZFP36L1 in limiting glutamine anaplerosis and differentiation of activated CD4+ T cells, likely mediated by direct binding to transcripts of critical genes that drive these processes
    corecore