10 research outputs found

    Deep electrical characterization and modeling of parasitic effects and degradation mechanisms of AlGaN/GaN HEMTs on SiC substrates

    No full text
    Les travaux de these s’inscrivent dans le cadre de deux projets: ReAGaN et ExtremeGaN avec des industriels (UMS, Serma Technologies, Thales TRT) et des laboratoires derecherche (LEPMI, LAAS et l’université de Bristol).Les deux technologies GaN (GH50 et GH25) étudiées dans cette thèse sont fournies parla société United Monolithic Semiconductors (UMS) et elles ont été qualifiées durant cettethèse. Plusieurs composants ont subi des tests de vieillissement accéléré en températureréalisés par UMS, ensuite une campagne de caractérisation électrique approfondie a étéréalisée au laboratoire IMS afin d’étudier les effets parasites et les mécanismes de dégradationqui limitent la fiabilté de cette filière.Le premier chapitre traite les bases du transistor HEMT à base de GaN. Les avantagesdu matériau nitrure de gallium ainsi que les substrats adaptés au HEMT à base de GaN sontprésentés. Une brève description du marché europeen des composants GaN est donnée.Ensuite, la structure ainsi que le fonctionnement du HEMT AlGaN/GaN sont décrit ainsi queles deux technologies d’UMS.Le deuxième chapitre présente les tests de vieillissement utilisés pour l’analyse defiabilité. Ensuite, un état de l’art des effets parasites et des mécanismes de dégradation desHEMTs AlGaN/GaN est donné. Le projet ReAGaN est décrit et les différentes techniques decaractérisation utilisées durant les travaux de cette thèse sont présentées.Le troisième chapitre est divisé en quatre études de cas ; les trois premières sont dans lecadre du projet ReAGaN et la quatrième dans le cadre du projet Extreme GaN. Dans lapremière étude de cas, les mécanismes de conduction qui augmentent les courants de fuitesdes HEMTs AlGaN/GaN issus de la technologie GH50 ont été étudiés. La deuxième étude decas est dédiée à l’étude d’un effet parasite électrique qui apparait après un vieillissementaccéléré en température sur la caractéristique de la diode Schottky en polarisation directe.Dans la troisième étude de cas, l’influence de la variation de la fraction molaire des HEMTsAlGaN/GaN sur les paramètres électriques a été analysée. La dernière étude de cas consiste enla détermination des limites de fonctionnement et l’aire de sécurité de la technologie GH25d’UMS en réalisant les mesures des lieux de claquage en mode diode et en mode transistor.This thesis is in the framework of two projects: ReAGaN and Extreme GaN withindustrials (UMS, Serma Technologies, Thales TRT) and academics (LEPMI, LAAS andUniversity of Bristol).The studied AlGaN/GaN HEMTs are provided by the society United MonolithicSemiconductors (UMS) from the GH50 and GH25 GaN processes that were qualified duringthis thesis. Many devices were submitted to high temperature accelerated life tests by UMSand characterized at IMS laboratory to study the parasitic effects and degradationsmechanisms that are limiting the electrical reliability of GaN based HEMTs technology.The first chapter gives an overview of the basics of GaN based high electron mobilitytransistors (HEMTs). Gallium Nitride material features are reviewed as well as substratessuited for GaN based devices. GaN market in Europe and the main industrial actors are listed.Furthermore, the structure and operation of GaN based HEMTs are described. In the last part,the two UMS GaN processes are described.The second chapter presents the life tests that are used for reliability studies. State of theart of parasitic effects and degradation mechanisms of AlGaN/GaN HEMTs is given.Furthermore, the ReAGaN project in which the main part of this thesis is involved isdescribed. The electrical characterization techniques used at IMS during this thesis arepresented.The third chapter is divided into four case studies; three case studies are in theframework of ReAGaN project and the fourth one in the Extreme GaN project. In the firstcase study, we investigate the conduction mechanisms inducing the leakage current inAlGaN/GaN HEMTs issued from GH50 process. The second case study is dedicated to thestudy of an electrical parasitic effect that appears on the Schottky diode forward characteristicafter temperature accelerated life tests. In the third case study, we study the influence of Almole fraction on the DC electrical parameters of AlGaN/GaN HEMTs. The last case studyconsists in the determination of the limits and safe operating area (SOA) of UMS GH25 GaNHEMTs by carrying out the two and three terminal breakdown voltages measurements

    Caractérisation électrique profonde et modélisation des effets parasites et des mécanismes de dégradation des HEMT AlGaN / GaN sur substrats SiC

    No full text
    This thesis is in the framework of two projects: ReAGaN and Extreme GaN withindustrials (UMS, Serma Technologies, Thales TRT) and academics (LEPMI, LAAS andUniversity of Bristol).The studied AlGaN/GaN HEMTs are provided by the society United MonolithicSemiconductors (UMS) from the GH50 and GH25 GaN processes that were qualified duringthis thesis. Many devices were submitted to high temperature accelerated life tests by UMSand characterized at IMS laboratory to study the parasitic effects and degradationsmechanisms that are limiting the electrical reliability of GaN based HEMTs technology.The first chapter gives an overview of the basics of GaN based high electron mobilitytransistors (HEMTs). Gallium Nitride material features are reviewed as well as substratessuited for GaN based devices. GaN market in Europe and the main industrial actors are listed.Furthermore, the structure and operation of GaN based HEMTs are described. In the last part,the two UMS GaN processes are described.The second chapter presents the life tests that are used for reliability studies. State of theart of parasitic effects and degradation mechanisms of AlGaN/GaN HEMTs is given.Furthermore, the ReAGaN project in which the main part of this thesis is involved isdescribed. The electrical characterization techniques used at IMS during this thesis arepresented.The third chapter is divided into four case studies; three case studies are in theframework of ReAGaN project and the fourth one in the Extreme GaN project. In the firstcase study, we investigate the conduction mechanisms inducing the leakage current inAlGaN/GaN HEMTs issued from GH50 process. The second case study is dedicated to thestudy of an electrical parasitic effect that appears on the Schottky diode forward characteristicafter temperature accelerated life tests. In the third case study, we study the influence of Almole fraction on the DC electrical parameters of AlGaN/GaN HEMTs. The last case studyconsists in the determination of the limits and safe operating area (SOA) of UMS GH25 GaNHEMTs by carrying out the two and three terminal breakdown voltages measurements.Les travaux de these s’inscrivent dans le cadre de deux projets: ReAGaN et ExtremeGaN avec des industriels (UMS, Serma Technologies, Thales TRT) et des laboratoires derecherche (LEPMI, LAAS et l’université de Bristol).Les deux technologies GaN (GH50 et GH25) étudiées dans cette thèse sont fournies parla société United Monolithic Semiconductors (UMS) et elles ont été qualifiées durant cettethèse. Plusieurs composants ont subi des tests de vieillissement accéléré en températureréalisés par UMS, ensuite une campagne de caractérisation électrique approfondie a étéréalisée au laboratoire IMS afin d’étudier les effets parasites et les mécanismes de dégradationqui limitent la fiabilté de cette filière.Le premier chapitre traite les bases du transistor HEMT à base de GaN. Les avantagesdu matériau nitrure de gallium ainsi que les substrats adaptés au HEMT à base de GaN sontprésentés. Une brève description du marché europeen des composants GaN est donnée.Ensuite, la structure ainsi que le fonctionnement du HEMT AlGaN/GaN sont décrit ainsi queles deux technologies d’UMS.Le deuxième chapitre présente les tests de vieillissement utilisés pour l’analyse defiabilité. Ensuite, un état de l’art des effets parasites et des mécanismes de dégradation desHEMTs AlGaN/GaN est donné. Le projet ReAGaN est décrit et les différentes techniques decaractérisation utilisées durant les travaux de cette thèse sont présentées.Le troisième chapitre est divisé en quatre études de cas ; les trois premières sont dans lecadre du projet ReAGaN et la quatrième dans le cadre du projet Extreme GaN. Dans lapremière étude de cas, les mécanismes de conduction qui augmentent les courants de fuitesdes HEMTs AlGaN/GaN issus de la technologie GH50 ont été étudiés. La deuxième étude decas est dédiée à l’étude d’un effet parasite électrique qui apparait après un vieillissementaccéléré en température sur la caractéristique de la diode Schottky en polarisation directe.Dans la troisième étude de cas, l’influence de la variation de la fraction molaire des HEMTsAlGaN/GaN sur les paramètres électriques a été analysée. La dernière étude de cas consiste enla détermination des limites de fonctionnement et l’aire de sécurité de la technologie GH25d’UMS en réalisant les mesures des lieux de claquage en mode diode et en mode transisto

    Optimization of 0.25µm GaN HEMTs through numerical simulations

    No full text
    0.25µm GaN HEMTs performance dependence from epitaxial and geometrical parameters has been investigated by means of numerical simulations. A single-heterojunction GaN HEMT structure with an iron doped buffer layer also including a mushroom-gate layout forming a gate-connected field-plate over the device SiN passivation layer was considered. Numerical simulations including static-IV characteristics and breakdown voltage estimation, small signal analysis and double pulse-IV characteristics have been carried out on more than 400 different structures. Simulations results showed that contact resistance, gate-source spacing, barrier thickness and AlGaN/SiN interface trap density are critical for improving device RF gain. Field-plate extension and passivation layer thickness were found to be parameters that can be used for trading off between device breakdown voltage and RF gain. Increasing iron-doping in the buffer layer leaded to larger breakdown voltage and RF gain but, due to the enhanced trapping effects, also to poorer large-signal operation

    Impact of Gate Drain Spacing on Low-Frequency Noise Performance of In Situ SiN Passivated InAlGaN/GaN MIS-HEMTs

    No full text
    International audienceIn this paper we investigated the gate–drain access region spacing (L GD) effect on electrical and noise performance of InAlGaN/GaN metal– insulator–semiconductor high electron mobility transistors (MIS-HEMTs) using in situ SiN cap layer as gate insulator. Different L GD of InAlGaN/GaN MIS-HEMTs using sub-10 nm barrier layer are studied. Low-frequency noise measurements have been carried out for the first time in order to analyze the impact of the gate–drain spacing on the electrical characteristics. The noise of the channel under the gate has been identified as the dominant channel noise source for L GD < 10 μm. Finally, the calculated Hooge parameter (α H) is equal to 3.1 × 10 −4. It reflects the high material quality while using sub-10 nm InAlGaN layer, which is promising for high-frequency applications

    Linearity and robustness evaluation of 150-nm AlN/GaN HEMTs

    No full text
    International audienceWe report on linearity and robustness of AlN/GaN HEMTs with ultra-thin 4nm AlN barrier for millimeter wave range applications. Static and dynamic I-V characteristics feature high peak transconductance (gmpeak) of 385 mS/mm, and the transconductance exhibits small changes with gate bias. Semi on-state step stress and 24 h stress tests have been carried out on representative AlN/GaN HEMTs on SiC substrate. No catastrophic failure was identified after semi on-state step stress at VGS =-1.5 V up to VDS = 100 V, whereas a gmpeak drop of 26 % was observed in these conditions. Moreover, 24 h stress carried out at different bias voltage along a load line show good robustness of these devices up to VDS = 25 V. In addition, an abrupt gate leakage current increase was identified to be field dependent, and associated with hot spots identified by electroluminescence measurements. Even in presence of a simple SiN passivation without air bridges or field plates, these devices exhibit high power added efficiency up to 40 GHz, thus demonstrating the great potential of AlN/GaN heterostructures

    Influence of gate leakage current on AlGaN/GaN HEMTs evidenced by low frequency noise and pulsed electrical measurements

    Get PDF
    International audienceThe study of the pulsed drain current or noise characteristics in AlGaN/GaN HEMTs is the key of knowledge for designing the power amplifiers, the low noise amplifiers and the oscillators or mixers, but it is well accepted today that this study is not fully accomplished without pointing on the effect of the gate leakage current; It is obvious that the transistor's leakage current may disturb its operation at high power and high frequency. Leakage currents studies are also an area of great importance in optimization of safe operating area and reliability of HEMTs. Therefore, room temperature pulsed I-V and low frequency noise measurements of gate and drain currents of AlGaN/GaN HEMTs have been investigated under different bias conditions on two devices showing identical drain current and different gate current levels. The results show a correlation between two non-destructive measurement techniques applied on devices under test
    corecore