4 research outputs found

    Comparison of Ozone Production Regimes between Two Mexican Cities: Guadalajara and Mexico City

    No full text
    Ozone concentrations have been increasing in the Guadalajara Metropolitan Area (GMA) in Mexico. To help devise efficient mitigation measures, we investigated the ozone formation regime by a chemical transport model (CTM) system WRF-CMAQ. The CTM system was validated by field measurement data of ground-level volatile organic compounds (VOC) and vertical profiles of ozone in GMA as well as in the Mexico City Metropolitan Area (MCMA). By conducting CTM simulations with modified emission rates of VOC and nitrogen oxides (NOx), the ozone formation regime in GMA was found to lie between VOC-sensitive and NOx-sensitive regimes. The result is consistent with the relatively large VOC/NOx emission ratio in GMA compared to that in MCMA where the ozone formation regime is in the VOC-sensitive regime

    Developments for collective Thomson scattering equipment with a sub-THz gyrotron in LHD

    Get PDF
    Plan of collective Thomson scattering (CTS) experiment for the Large Helical Device (LHD) in NIFS with a 303 GHz gyrotron is under way. Use of a sub-THz gyrotron expands the CTS-applicable region of plasma parameters. In LHD, sub-THz CTS can be applied to the high density operation region, plasmas with impurity hole, etc. Moreover, sub-THz CTS is expected to be free from ECE noise. Its “collective” use with 77 GHz and 154 GHz CTS will compose a powerful diagnostic system. A high power sub-THz gyrotron with a frequency of 303 GHz has been developed. Its maximum power is 320 kW. It oscillates in pulse mode and the maximum pulse width is around 100 μs, which is sufficient for use in CTS experiments. A whispering gallery mode TE22,2 was adopted for this gyrotron to avoid mode competition. Careful frequency measurement has proved purely single mode oscillation of the TE22,2 mode including turn-on and turn-off phases of the oscillation pulse. This is consistent with mode competition calculations taking account of a finite voltage rise time. A low loss transmission line is necessary for CTS. We have two possibilities. One is a new line with 1.25 inch corrugated waveguides that are optimized for the 300 GHz band. Transmission test with the 303 GHz gyrotron has been carried out and a sufficiently low loss coefficient has been confirmed. The other is to use an existing line with 3.5 inch corrugated waveguides for lower frequencies such as 77 GHz and 154 GHz. Transmission test has been carried out with the 303 GHz gyrotron and a sufficiently low loss coefficient has been confirmed also for 3.5 inch corrugated waveguides. An existing line with 3.5 inch corrugated waveguides will be used in the initial phase of 303 GHz CTS experiment

    Developments for collective Thomson scattering equipment with a sub-THz gyrotron in LHD

    No full text
    Plan of collective Thomson scattering (CTS) experiment for the Large Helical Device (LHD) in NIFS with a 303 GHz gyrotron is under way. Use of a sub-THz gyrotron expands the CTS-applicable region of plasma parameters. In LHD, sub-THz CTS can be applied to the high density operation region, plasmas with impurity hole, etc. Moreover, sub-THz CTS is expected to be free from ECE noise. Its “collective” use with 77 GHz and 154 GHz CTS will compose a powerful diagnostic system. A high power sub-THz gyrotron with a frequency of 303 GHz has been developed. Its maximum power is 320 kW. It oscillates in pulse mode and the maximum pulse width is around 100 μs, which is sufficient for use in CTS experiments. A whispering gallery mode TE22,2 was adopted for this gyrotron to avoid mode competition. Careful frequency measurement has proved purely single mode oscillation of the TE22,2 mode including turn-on and turn-off phases of the oscillation pulse. This is consistent with mode competition calculations taking account of a finite voltage rise time. A low loss transmission line is necessary for CTS. We have two possibilities. One is a new line with 1.25 inch corrugated waveguides that are optimized for the 300 GHz band. Transmission test with the 303 GHz gyrotron has been carried out and a sufficiently low loss coefficient has been confirmed. The other is to use an existing line with 3.5 inch corrugated waveguides for lower frequencies such as 77 GHz and 154 GHz. Transmission test has been carried out with the 303 GHz gyrotron and a sufficiently low loss coefficient has been confirmed also for 3.5 inch corrugated waveguides. An existing line with 3.5 inch corrugated waveguides will be used in the initial phase of 303 GHz CTS experiment

    Physiological and methodological aspects of rate of force development assessment in human skeletal muscle

    No full text
    corecore