45 research outputs found

    Nerves projecting from the intrinsic cardiac ganglia of the pulmonary veins modulate sinoatrial node pacemaker function

    Full text link
    Rationale: Autonomic nerves from sinoatrial node (SAN) ganglia are known to regulate SAN function. However, it is unclear whether remote pulmonary vein ganglia (PVG) also modulate SAN pacemaker rhythm. Objective: To investigate whether in the mouse heart PVG modulate SAN function. Methods and Results: In hearts from 45 C57BL and 7 Connexin40+/GFP mice, we used tyrosine-hydroxylase (TH) and choline-acetyltransferase (ChAT) immunofluorescence labeling to characterize adrenergic and cholinergic elements, repectively, within the PVG and SAN. PVG project postganglionic nerves to the SAN. TH and ChAT stained nerves, enter the SAN as an extensive, dense mesh-like neural network. Neurons in PVG are biphenotypic, containing ChAT and TH positive neurons. In Langendorff-perfused hearts, we compared effects of electrical stimulation of PVG, posterior (PRCVG) and anterior right vena cava ganglia (ARCVG) using 200-2000 ms trains of pulses (300μs, 0.2-0.6mA, 200Hz). Sympathetic and/or parasympathetic blockade was achieved using 0.5μM propranolol and 1μM atropine, respectively. Epicardial optical mapping of SAN activation was performed before, during and after ganglion stimulation. PVG stimulation increased the P-P interval by 36±9%; PRCVG stimulation increased the P-P interval by 42±11%. ARCVG stimulation produced no change. Propranolol perfusion increased the PVG stimulation effect to 43±13%. Atropine caused a 5±6% decrease. In optical mapping experiments of whole hearts and isolated atrial preparations, PVG stimulation shifted the origin of SAN discharges to varying locations. Conclusions: PVG contain cholinergic, adrenergic and biphenotipic neurons whose axons project across the right atrium to richly innervate the SAN region and contribute significantly to regulation of SAN function.Zarzoso Muñoz, M.; Rysevaite, K.; Milstein, ML.; Calvo Saiz, CJ.; Kean, AC.; Atienza Fernández, F.; Pauza, DH.... (2013). Nerves projecting from the intrinsic cardiac ganglia of the pulmonary veins modulate sinoatrial node pacemaker function. Cardiovascular Research. 566-575. doi:10.1093/cvr/cvt081S566575Johnson, T. A., Gray, A. L., Lauenstein, J.-M., Newton, S. S., & Massari, V. J. (2004). Parasympathetic control of the heart. I. An interventriculo-septal ganglion is the major source of the vagal intracardiac innervation of the ventricles. Journal of Applied Physiology, 96(6), 2265-2272. doi:10.1152/japplphysiol.00620.2003Rysevaite, K., Saburkina, I., Pauziene, N., Noujaim, S. F., Jalife, J., & Pauza, D. H. (2011). Morphologic pattern of the intrinsic ganglionated nerve plexus in mouse heart. Heart Rhythm, 8(3), 448-454. doi:10.1016/j.hrthm.2010.11.019Yuan, B.-X., Ardell, J. L., Hopkins, D. A., & Armour, J. A. (1993). Differential cardiac responses induced by nicotine sensitive canine atrial and ventricular neurones. Cardiovascular Research, 27(5), 760-769. doi:10.1093/cvr/27.5.760Rysevaite, K., Saburkina, I., Pauziene, N., Vaitkevicius, R., Noujaim, S. F., Jalife, J., & Pauza, D. H. (2011). Immunohistochemical characterization of the intrinsic cardiac neural plexus in whole-mount mouse heart preparations. Heart Rhythm, 8(5), 731-738. doi:10.1016/j.hrthm.2011.01.013Pauza, D. H., Pauziene, N., Pakeltyte, G., & Stropus, R. (2002). Comparative quantitative study of the intrinsic cardiac ganglia and neurons in the rat, guinea pig, dog and human as revealed by histochemical staining for acetylcholinesterase. Annals of Anatomy - Anatomischer Anzeiger, 184(2), 125-136. doi:10.1016/s0940-9602(02)80005-xPauza, D. H., Skripka, V., & Pauziene, N. (2002). Morphology of the Intrinsic Cardiac Nervous System in the Dog: A Whole-Mount Study Employing Histochemical Staining with Acetylcholinesterase. Cells Tissues Organs, 172(4), 297-320. doi:10.1159/000067198Arora, R. C., Waldmann, M., Hopkins, D. A., & Armour, J. A. (2003). Porcine intrinsic cardiac ganglia. The Anatomical Record, 271A(1), 249-258. doi:10.1002/ar.a.10030Gatti, P. J., Johnson, T. A., & John Massari, V. (1996). Can neurons in the nucleus ambiguus selectively regulate cardiac rate and atrio-ventricular conduction? Journal of the Autonomic Nervous System, 57(1-2), 123-127. doi:10.1016/0165-1838(95)00104-2Zhuang, S., Zhang, Y., Mowrey, K. A., Li, J., Tabata, T., Wallick, D. W., … Mazgalev, T. N. (2002). Ventricular Rate Control by Selective Vagal Stimulation Is Superior to Rhythm Regularization by Atrioventricular Nodal Ablation and Pacing During Atrial Fibrillation. Circulation, 106(14), 1853-1858. doi:10.1161/01.cir.0000031802.58532.04CHEN, J., WASMUND, S. L., & HAMDAN, M. H. (2006). Back to the Future: The Role of the Autonomic Nervous System in Atrial Fibrillation. Pacing and Clinical Electrophysiology, 29(4), 413-421. doi:10.1111/j.1540-8159.2006.00362.xArmour, J. A. (2008). Potential clinical relevance of the ‘little brain’ on the mammalian heart. Experimental Physiology, 93(2), 165-176. doi:10.1113/expphysiol.2007.041178LAZZARA, R., SCHERLAG, B. J., ROBINSON, M. J., & SAMET, P. (1973). Selective In Situ Parasympathetic Control of the Canine Sinoatrial and Atrioventricular Nodes. Circulation Research, 32(3), 393-401. doi:10.1161/01.res.32.3.393Gray, A. L., Johnson, T. A., Ardell, J. L., & Massari, V. J. (2004). Parasympathetic control of the heart. II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. Journal of Applied Physiology, 96(6), 2273-2278. doi:10.1152/japplphysiol.00616.2003Pappone, C., Santinelli, V., Manguso, F., Vicedomini, G., Gugliotta, F., Augello, G., … Alfieri, O. (2004). Pulmonary Vein Denervation Enhances Long-Term Benefit After Circumferential Ablation for Paroxysmal Atrial Fibrillation. Circulation, 109(3), 327-334. doi:10.1161/01.cir.0000112641.16340.c7MIQUEROL, L., MEYSEN, S., MANGONI, M., BOIS, P., VANRIJEN, H., ABRAN, P., … GROS, D. (2004). Architectural and functional asymmetry of the His–Purkinje system of the murine heart. Cardiovascular Research, 63(1), 77-86. doi:10.1016/j.cardiores.2004.03.007Jalife, J., Slenter, V. A., Salata, J. J., & Michaels, D. C. (1983). Dynamic vagal control of pacemaker activity in the mammalian sinoatrial node. Circulation Research, 52(6), 642-656. doi:10.1161/01.res.52.6.642Fedorov, V. V., Hucker, W. J., Dobrzynski, H., Rosenshtraukh, L. V., & Efimov, I. R. (2006). Postganglionic nerve stimulation induces temporal inhibition of excitability in rabbit sinoatrial node. American Journal of Physiology-Heart and Circulatory Physiology, 291(2), H612-H623. doi:10.1152/ajpheart.00022.2006Saburkina, I., & Pauza, D. H. (2006). Location and variability of epicardiac ganglia in human fetuses. Anatomy and Embryology, 211(6), 585-594. doi:10.1007/s00429-006-0110-4Slavíková, J., Kuncová, J., Reischig, J., & Dvořáková, M. (2003). Neurochemical Research, 28(3/4), 593-598. doi:10.1023/a:1022837810357Tan, A. Y., Li, H., Wachsmann-Hogiu, S., Chen, L. S., Chen, P.-S., & Fishbein, M. C. (2006). Autonomic Innervation and Segmental Muscular Disconnections at the Human Pulmonary Vein-Atrial Junction. Journal of the American College of Cardiology, 48(1), 132-143. doi:10.1016/j.jacc.2006.02.054Vaitkevicius, R., Saburkina, I., Rysevaite, K., Vaitkeviciene, I., Pauziene, N., Zaliunas, R., … Pauza, D. H. (2009). Nerve Supply of the Human Pulmonary Veins: An Anatomical Study. Heart Rhythm, 6(2), 221-228. doi:10.1016/j.hrthm.2008.10.027Mabe, A. M., & Hoover, D. B. (2009). Structural and functional cardiac cholinergic deficits in adult neurturin knockout mice. Cardiovascular Research, 82(1), 93-99. doi:10.1093/cvr/cvp029Beau, S. L., Hand, D. E., Schuessler, R. B., Bromberg, B. I., Kwon, B., Boineau, J. P., & Saffitz, J. E. (1995). Relative Densities of Muscarinic Cholinergic and β-Adrenergic Receptors in the Canine Sinoatrial Node and Their Relation to Sites of Pacemaker Activity. Circulation Research, 77(5), 957-963. doi:10.1161/01.res.77.5.957Mangoni, M. E., & Nargeot, J. (2008). Genesis and Regulation of the Heart Automaticity. Physiological Reviews, 88(3), 919-982. doi:10.1152/physrev.00018.2007Brack, K. E., Coote, J. H., & Ng, G. A. (2003). Interaction between direct sympathetic and vagus nerve stimulation on heart rate in the isolated rabbit heart. Experimental Physiology, 89(1), 128-139. doi:10.1113/expphysiol.2003.002654Levy, M. N., & Zieske, H. (1969). Autonomic control of cardiac pacemaker activity and atrioventricular transmission. Journal of Applied Physiology, 27(4), 465-470. doi:10.1152/jappl.1969.27.4.465Hartzell, H. C. (1988). Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Progress in Biophysics and Molecular Biology, 52(3), 165-247. doi:10.1016/0079-6107(88)90014-4LEVY, M. N., YANG, T., & WALLICK, D. W. (1993). Assessment of Beat-by-Beat Control of Heart Rate by the Autonomic Nervous System: Molecular Biology Techniques Are Necessary, But Not Sufficient. Journal of Cardiovascular Electrophysiology, 4(2), 183-193. doi:10.1111/j.1540-8167.1993.tb01222.xLevy, M. N. (1971). Brief Reviews. Circulation Research, 29(5), 437-445. doi:10.1161/01.res.29.5.437Ng, G. A., Brack, K. E., & Coote, J. H. (2001). Effects of Direct Sympathetic and Vagus Nerve Stimulation on the Physiology of the Whole Heart - A Novel Model of Isolated Langendorff Perfused Rabbit Heart with Intact Dual Autonomic Innervation. Experimental Physiology, 86(3), 319-329. doi:10.1113/eph8602146Goldberg, J. (1975). Intra-SA-nodal pacemaker shifts induced by autonomic nerve stimulation in the dog. American Journal of Physiology-Legacy Content, 229(4), 1116-1123. doi:10.1152/ajplegacy.1975.229.4.1116Shibata, N., Inada, S., Mitsui, K., Honjo, H., Yamamoto, M., Niwa, R., … Kodama, I. (2001). Pacemaker Shift in the Rabbit Sinoatrial Node in Response to Vagal Nerve Stimulation. Experimental Physiology, 86(2), 177-184. doi:10.1113/eph8602100Glukhov, A. V., Fedorov, V. V., Anderson, M. E., Mohler, P. J., & Efimov, I. R. (2010). Functional anatomy of the murine sinus node: high-resolution optical mapping of ankyrin-B heterozygous mice. American Journal of Physiology-Heart and Circulatory Physiology, 299(2), H482-H491. doi:10.1152/ajpheart.00756.2009Michaels, D. C., Matyas, E. P., & Jalife, J. (1987). Mechanisms of sinoatrial pacemaker synchronization: a new hypothesis. Circulation Research, 61(5), 704-714. doi:10.1161/01.res.61.5.704Boyett, M. (2000). The sinoatrial node, a heterogeneous pacemaker structure. Cardiovascular Research, 47(4), 658-687. doi:10.1016/s0008-6363(00)00135-8Lemery, R., Birnie, D., Tang, A. S. L., Green, M., & Gollob, M. (2006). Feasibility study of endocardial mapping of ganglionated plexuses during catheter ablation of atrial fibrillation. Heart Rhythm, 3(4), 387-396. doi:10.1016/j.hrthm.2006.01.009Pokushalov, E., Romanov, A., Shugayev, P., Artyomenko, S., Shirokova, N., Turov, A., & Katritsis, D. G. (2009). Selective ganglionated plexi ablation for paroxysmal atrial fibrillation. Heart Rhythm, 6(9), 1257-1264. doi:10.1016/j.hrthm.2009.05.018Scherlag, B. J., Nakagawa, H., Jackman, W. M., Yamanashi, W. S., Patterson, E., Po, S., & Lazzara, R. (2005). Electrical Stimulation to Identify Neural Elements on the Heart: Their Role in Atrial Fibrillation. Journal of Interventional Cardiac Electrophysiology, 13(S1), 37-42. doi:10.1007/s10840-005-2492-2Puodziukynas, A., Kazakevicius, T., Vaitkevicius, R., Rysevaite, K., Jokubauskas, M., Saburkina, I., … Pauza, D. H. (2012). Radiofrequency catheter ablation of pulmonary vein roots results in axonal degeneration of distal epicardial nerves. Autonomic Neuroscience, 167(1-2), 61-65. doi:10.1016/j.autneu.2012.01.001Bauer, A., Deisenhofer, I., Schneider, R., Zrenner, B., Barthel, P., Karch, M., … Schmidt, G. (2006). Effects of circumferential or segmental pulmonary vein ablation for paroxysmal atrial fibrillation on cardiac autonomic function. Heart Rhythm, 3(12), 1428-1435. doi:10.1016/j.hrthm.2006.08.025Armour, J. A. (2010). Functional anatomy of intrathoracic neurons innervating the atria and ventricles. Heart Rhythm, 7(7), 994-996. doi:10.1016/j.hrthm.2010.02.01

    A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel

    Get PDF
    Opening of BK-type Ca2+ activated K+ channels protects the heart against ischemia-reperfusion (IR) injury. However, the location of BK channels responsible for cardioprotection is debated. Herein we confirmed that openers of the SLO1 BK channel, NS1619 and NS11021, were protective in a mouse perfused heart model of IR injury. As anticipated, deletion of the Slo1 gene blocked this protection. However, in an isolated cardiomyocyte model of IR injury, protection by NS1619 and NS11021 was insensitive to Slo1 deletion. These data suggest that protection in intact hearts occurs by a non-cardiomyocyte autonomous, SLO1-dependent, mechanism. In this regard, an in-situ assay of intrinsic cardiac neuronal function (tachycardic response to nicotine) revealed that NS1619 preserved cardiac neurons following IR injury. Furthermore, blockade of synaptic transmission by hexamethonium suppressed cardioprotection by NS1619 in intact hearts. These results suggest that opening SLO1 protects the heart during IR injury, via a mechanism that involves intrinsic cardiac neurons. Cardiac neuronal ion channels may be useful therapeutic targets for eliciting cardioprotection

    Neuro-cardiac interaction in malignant ventricular arrhythmia and sudden cardiac death

    Full text link
    Sudden cardiac death as a result of lethal ventricular arrhythmias is a major cause of death in cardiac diseases such as heart failure and prior myocardial infarct. Activity of the autonomic nervous system is often abnormal where sympathetic activity is upregulated and vagal activity reduced in these conditions. The abnormal autonomic state has been shown to be a strong prognostic marker of increased mortality and propensity to lethal arrhythmias, for which there is no effective prevention. Research effort over the years has established good evidence for a causal link between autonomic disturbance and ventricular arrhythmias. However, the detailed electrophysiological mechanisms by which ventricular fibrillation occurs are still not clear and molecular processes which are modulated by autonomic nerve influences that either predispose the heart to or protect it from these arrhythmias are not fully understood. This review presents data from studies investigating the link between activity of the autonomic nervous system and ventricular arrhythmias, from seminal findings in classical studies to ongoing investigations, in the quest for a better understanding of the arrhythmogenic mechanisms underlying neurocardiac interactions with a view to the development of effective preventative and therapeutic strategies which are very much needed

    Mechanisms underlying the autonomic modulation of ventricular fibrillation initiation—tentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure

    Full text link

    За кадры. 1988. № 1 (2728)

    No full text
    Портрет ученогоИзбраны в АкадемиюИнтересная встреча / В. БяликовУроки одного собрания / А. Корниенко, Е. Водопьянова"Прямая связь""Кругозор" для кругозора / Г. КозловаГотовность номер одинУчатся рядом / Н. Овчинникова, Г. Галкина"Мы ждем вас на короблях!" / А. ГришинКонтролер-тепловизорВ целях экономии / Н. ОреховаВ зеркале отписок / М. Мельников [и др.]Не цифрой в отчете / В. Чуприкова, Е. Седельникова"Свадьба Кречинского" / М. СмирноваПерекличка с XVI веком / О. ИвановУстроили праздник / Р. ГорскаяДавайте бережно / О. Молодцо

    Innervation of sinoatrial nodal cardiomyocytes in mouse. A combined approach using immunofluorescent and electron microscopy

    No full text
    Fluorescent immunohistochemistry on the cardiac conduction system in whole mount mouse heart preparations demonstrates a particularly dense and complex network of nerve fibres and cardiomyocytes which are positive to the hyperpolarization activated cyclic nucleotide-gated potassium channel 4 (HCN4-positive cardiomyocytes) in the sinoatrial node region and adjacent areas around the root of right cranial vein. The present study was designed to investigate the morphologic and histochemical pattern of nerve fibres and HCN4-positive cardiomyocytes using fluorescent techniques and/or electron microscopy. Adrenergic and cholinergic nerve fibres together with HCN4-positive cardiomyocytes were identified using primary antibodies for tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), and the HCN4 channel respectively. Amid HCN4-positive cardiomyocytes, fluorescence and electron microscopy data demonstrated a dense distribution of nerve fibres immunoreactive for ChAT and TH. In addition, novel electron microscopy data revealed that the mouse sinoatrial node contained exclusively unmyelinated nerve fibres, in which the majority of axons possess varicosities with clear mediatory vesicles that can be classified as cholinergic. Synapses occurred without any clear terminal connection with the effector cell, i.e. these synapes were of "en passant" type. In general, the morphologic pattern of innervation of mouse HCN4-positive cardiomyocytes identified using electron microscopy corresponds well to the dense network of nerve fibres demonstrated by fluorescent immunohistochemistry in mouse sinoatrial node and adjacent areas. The complex and extraordinarily dense innervation of HCN4-positive cardiomyocytes in mouse sinoatrial node underpins the importance of neural regulation for the cardiac conduction system. [...]

    Morphological pattern of intrinsic nerve plexus distributed on the rabbit heart and interatrial septum

    No full text
    Although the rabbit is routinely used as the animal model of choice to investigate cardiac electrophysiology, the neuroanatomy of the rabbit heart is not well documented. The aim of this study was to examine the topography of the intrinsic nerve plexus located on the rabbit heart surface and interatrial septum stained histochemically for acetylcholinesterase using pressure-distended whole hearts and whole-mount preparations from 33 Californian rabbits. Mediastinal cardiac nerves entered the venous part of the heart along the root of the right cranial vein (superior caval vein) and at the bifurcation of the pulmonary trunk. The accessing nerves of the venous part of the heart passed into the nerve plexus of heart hilum at the heart base. Nerves approaching the heart extended epicardially and innervated the atria, interatrial septum and ventricles by five nerve subplexuses, i.e. left and middle dorsal, dorsal right atrial, ventral right and left atrial subplexuses. Numerous nerves accessed the arterial part of the arterial part of the heart hilum between the aorta and pulmonary trunk, and distributed onto ventricles by the left and right coronary subplexuses. Clusters of intrinsic cardiac neurons were concentrated at the heart base at the roots of pulmonary veins with some positioned on the infundibulum. The mean number of intrinsic neurons in the rabbit heart is not significantly affected by aging: 2200 ± 262 (range 1517–2788; aged) vs. 2118 ± 108 (range 1513–2822; juvenile). In conclusion, despite anatomic differences in the distribution of intrinsic cardiac neurons and the presence of well-developed nerve plexus within the heart hilum, the topography of all seven subplexuses of the intrinsic nerve plexus in rabbit heart corresponds rather well to other mammalian species, including humans

    Ultrastructural changes of the human enteric nervous system and interstitial cells of Cajal in diverticular disease.

    No full text
    Background. In spite of numerous advances in understanding diverticular disease, its pathogenesis remains one of the main problems to be solved. We aimed to investigate the ultrastructural changes of the enteric nervous system in unaffected individuals, in asymptomatic patients with diverticulosis and in patients with diverticular disease. Methods. Transmission electron microscopy was used to analyse samples of the myenteric, outer submucosal and inner submucosal plexuses from patients without diverticula (n=9), asymptomatic patients with diverticulosis (n=7) and in patients with complicated diverticular disease (n=9). We described the structure of ganglia, interstitial cells of Cajal and enteric nerves, as well as their relationship with each other. The distribution and size of nerve processes were analysed quantitatively. Results. In complicated diverticular disease, neurons exhibited larger lipofuscin-like inclusions, their membranous organelles had larger cisterns and the nucleus showed deeper indentations. Nerve remodeling occurred in every plexus, characterised by an increased percentage of swollen and fine neurites. Interstitial cells of Cajal had looser contacts with the surrounding cells and showed cytoplasmic depletion and proliferation of the rough endoplasmic reticulum. In asymptomatic patients with diverticulosis, alterations of enteric nerves and ICC were less pronounced. Conclusions. In conclusion, the present findings suggest that most ultrastructural changes of the enteric nervous system occur in complicated diverticular disease. The changes are compatible with damage to the enteric nervous system and reactive remodeling of enteric ganglia, nerves and interstitial cells of Cajal. Disrupted architecture of enteric plexuses might explain clinical and pathophysiological changes associated with diverticular diseas
    corecore