6 research outputs found

    Predator traits determine food-web architecture across ecosystems

    Get PDF
    Predator–prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator–prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator–prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems

    Efficacy, safety, and immunogenicity of a booster regimen of Ad26.COV2.S vaccine against COVID-19 (ENSEMBLE2) : results of a randomised, double-blind, placebo-controlled, phase 3 trial

    No full text
    Background Despite the availability of effective vaccines against COVID-19, booster vaccinations are needed to maintain vaccine-induced protection against variant strains and breakthrough infections. This study aimed to investigate the efficacy, safety, and immunogenicity of the Ad26.COV2.S vaccine (Janssen) as primary vaccination plus a booster dose. Methods ENSEMBLE2 is a randomised, double-blind, placebo-controlled, phase 3 trial including crossover vaccination after emergency authorisation of COVID-19 vaccines. Adults aged at least 18 years without previous COVID-19 vaccination at public and private medical practices and hospitals in Belgium, Brazil, Colombia, France, Germany, the Philippines, South Africa, Spain, the UK, and the USA were randomly assigned 1:1 via a computer algorithm to receive intramuscularly administered Ad26.COV2.S as a primary dose plus a booster dose at 2 months or two placebo injections 2 months apart. The primary endpoint was vaccine efficacy against the first occurrence of molecularly confirmed moderate to severe-critical COVID-19 with onset at least 14 days after booster vaccination, which was assessed in participants who received two doses of vaccine or placebo, were negative for SARS-CoV-2 by PCR at baseline and on serology at baseline and day 71, had no major protocol deviations, and were at risk of COVID-19 (ie, had no PCR-positive result or discontinued the study before day 71). Safety was assessed in all participants; reactogenicity, in terms of solicited local and systemic adverse events, was assessed as a secondary endpoint in a safety subset (approximately 6000 randomly selected participants). The trial is registered with ClinicalTrials.gov, NCT04614948, and is ongoing. Findings Enrolment began on Nov 16, 2020, and the primary analysis data cutoff was June 25, 2021. From 34 571 participants screened, the double-blind phase enrolled 31 300 participants, 14 492 of whom received two doses (7484 in the Ad26.COV2.S group and 7008 in the placebo group) and 11 639 of whom were eligible for inclusion in the assessment of the primary endpoint (6024 in the Ad26.COV2.S group and 5615 in the placebo group). The median (IQR) follow-up post-booster vaccination was 36 center dot 0 (15 center dot 0-62 center dot 0) days. Vaccine efficacy was 75 center dot 2% (adjusted 95% CI 54 center dot 6-87 center dot 3) against moderate to severe-critical COVID-19 (14 cases in the Ad26.COV2.S group and 52 cases in the placebo group). Most cases were due to the variants alpha (B.1.1.7) and mu (B.1.621); endpoints for the primary analysis accrued from Nov 16, 2020, to June 25, 2021, before the global dominance of delta (B.1.617.2) or omicron (B.1.1.529). The booster vaccine exhibited an acceptable safety profile. The overall frequencies of solicited local and systemic adverse events (evaluated in the safety subset, n=6067) were higher among vaccine recipients than placebo recipients after the primary and booster doses. The frequency of solicited adverse events in the Ad26.COV2.S group were similar following the primary and booster vaccinations (local adverse events, 1676 [55 center dot 6%] of 3015 vs 896 [57 center dot 5%] of 1559, respectively; systemic adverse events, 1764 [58 center dot 5%] of 3015 vs 821 [52 center dot 7%] of 1559, respectively). Solicited adverse events were transient and mostly grade 1-2 in severity. Interpretation A homologous Ad26.COV2.S booster administered 2 months after primary single-dose vaccination in adults had an acceptable safety profile and was efficacious against moderate to severe-critical COVID-19. Studies assessing efficacy against newer variants and with longer follow-up are needed. Funding Janssen Research & Development. Copyright (c) 2022 The Author(s). Published by Elsevier Ltd
    corecore