10 research outputs found

    Strategyproof matching with regional minimum and maximum quotas

    Get PDF
    This paper considers matching problems with individual/regional minimum/maximum quotas. Although such quotas are relevant in many real-world settings, there is a lack of strategyproof mechanisms that take such quotas into account. We first show that without any restrictions on the regional structure, checking the existence of a feasible matching that satisfies all quotas is NP-complete. Then, assuming that regions have a hierarchical structure (i.e., a tree), we show that checking the existence of a feasible matching can be done in time linear in the number of regions. We develop two strategyproof matching mechanisms based on the Deferred Acceptance mechanism (DA), which we call Priority List based Deferred Acceptance with Regional minimum and maximum Quotas (PLDA-RQ) and Round-robin Selection Deferred Acceptance with Regional minimum and maximum Quotas (RSDA-RQ). When regional quotas are imposed, a stable matching may no longer exist since fairness and nonwastefulness, which compose stability, are incompatible. We show that both mechanisms are fair. As a result, they are inevitably wasteful. We show that the two mechanisms satisfy different versions of nonwastefulness respectively; each is weaker than the original nonwastefulness. Moreover, we compare our mechanisms with an artificial cap mechanism via simulation experiments, which illustrate that they have a clear advantage in terms of nonwastefulness and student welfare

    Designing Matching Mechanisms under General Distributional Constraints

    Get PDF
    In this paper, we consider two-sided, many-to-one matching problems where agents in one side of the market (schools) impose some distributional constraints (e.g., a maximum quota for a set of schools), and develop a strategyproof mechanism that can handle a very general class of distributional constraints. We assume distributional constraints are imposed on a vector, where each element is the number of contracts accepted for each school. The only requirement we impose on distributional constraints is that the family of vectors that satisfy distributional constraints must be hereditary, which means if a vector satisfies the constraints, any vector that is smaller than it also satisfies them. When distributional constraints are imposed, a stable matching may not exist. We develop a strategyproof mechanism called Adaptive Deferred Acceptance mechanism (ADA), which is nonwasteful and ``more fair'' than a simple nonwasteful mechanism called the Serial Dictatorship mechanism (SD) and ``less wasteful'' than another simple fair mechanism called the Artificial Cap Deferred Acceptance mechanism (ACDA). We show that we can apply this mechanism even if the distributional constraints do not satisfy the hereditary condition by applying a simple trick, assuming we can find a vector that satisfy the distributional constraints efficiently. Furthermore, we demonstrate the applicability of our model in actual application domains

    Designing Matching Mechanisms under General Distributional Constraints

    Get PDF
    In this paper, we consider two-sided, many-to-one matching problems where agents in one side of the market (schools) impose some distributional constraints (e.g., a maximum quota for a set of schools), and develop a strategyproof mechanism that can handle a very general class of distributional constraints. We assume distributional constraints are imposed on a vector, where each element is the number of contracts accepted for each school. The only requirement we impose on distributional constraints is that the family of vectors that satisfy distributional constraints must be hereditary, which means if a vector satisfies the constraints, any vector that is smaller than it also satisfies them. When distributional constraints are imposed, a stable matching may not exist. We develop a strategyproof mechanism called Adaptive Deferred Acceptance mechanism (ADA), which is nonwasteful and ``more fair'' than a simple nonwasteful mechanism called the Serial Dictatorship mechanism (SD) and ``less wasteful'' than another simple fair mechanism called the Artificial Cap Deferred Acceptance mechanism (ACDA). We show that we can apply this mechanism even if the distributional constraints do not satisfy the hereditary condition by applying a simple trick, assuming we can find a vector that satisfy the distributional constraints efficiently. Furthermore, we demonstrate the applicability of our model in actual application domains

    Controlled School Choice with Soft Bounds and Overlapping Types

    No full text
    School choice programs are implemented to give students/parents an opportunity to choose the public school the students attend. Controlled school choice programs need to provide choices for students/parents while maintaining distributional constraints on the balance on the composition of students, typically in terms of socioeconomic status. Previous works show that setting soft-bounds, which flexibly change the priorities of students based on their types, is more appropriate than setting hard-bounds, which strictly limit the number of accepted students for each type. We consider a case where soft-bounds are imposed and one student can belong to multiple types, e.g., ``financially-distressed'' and ``minority'' types. We first show that when we apply a model that is a straightforward extension of an existing model for disjoint types, there is a chance that no stable matching exists. Thus, we propose an alternative model and an alternative stability definition, where a school has reserved seats for each type. We show that a stable matching is guaranteed to exist in this model, and develop a mechanism called Deferred Acceptance for Overlapping Types (DA-OT). The DA-OT mechanism is strategy-proof and obtains the student-optimal matching within all stable matchings. Computer simulation results illustrate that the DA-OT outperforms an artificial cap mechanism, where the number of seats for each type is fixed
    corecore