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This paper considers matching problems with individual/regional minimum/maximum 
quotas. Although such quotas are relevant in many real-world settings, there is a lack of 
strategyproof mechanisms that take such quotas into account. We first show that without 
any restrictions on the regional structure, checking the existence of a feasible matching 
that satisfies all quotas is NP-complete. Then, assuming that regions have a hierarchical 
structure (i.e., a tree), we show that checking the existence of a feasible matching can 
be done in time linear in the number of regions. We develop two strategyproof matching 
mechanisms based on the Deferred Acceptance mechanism (DA), which we call Priority 
List based Deferred Acceptance with Regional minimum and maximum Quotas (PLDA-RQ) 
and Round-robin Selection Deferred Acceptance with Regional minimum and maximum 
Quotas (RSDA-RQ). When regional quotas are imposed, a stable matching may no longer 
exist since fairness and nonwastefulness, which compose stability, are incompatible. We 
show that both mechanisms are fair. As a result, they are inevitably wasteful. We show 
that the two mechanisms satisfy different versions of nonwastefulness respectively; each 
is weaker than the original nonwastefulness. Moreover, we compare our mechanisms with 
an artificial cap mechanism via simulation experiments, which illustrate that they have a 
clear advantage in terms of nonwastefulness and student welfare.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this paper, we consider a two-sided matching problem. In a standard two-sided matching problem, there are two types 
of agents, where one type called a student is matched to another type called a school. Multiple students can be matched to 

✩ This paper is based on the authors’ conference publication [9]. The difference between this paper and [9] is as follows. In this paper, we use a 
strictly more general model, in which regional minimum and maximum quotas co-exist, while Goto et al. [9] consider only regional minimum quotas. 
They developed two mechanisms, one is fair but wasteful, while the other is nonwasteful but not fair. Both mechanisms cannot handle regional maximum 
quotas. In this paper, we concentrate on fair mechanisms and develop two fair mechanisms, one of which can be considered as an extension of the fair 
mechanism developed in [9].
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Table 1
DA-based mechanisms with regional quotas. ∗ indicates our contribution, † indicates a special case that can be covered by our contribution. (KK: Kamada 
and Kojima [18], BFIM: Biro et al. [2], FITUY: Fragiadakis et al. [7], GIKYY: Goto et al. [10].)

Maximum quotas

Individual Hierarchical regions General regions

Minimum quotas

None DA KK/BFIM GIKYY

NP-complete∗Individual FITUY †

Hierarchical regions † PLDA-RQ∗ RSDA-RQ∗

General regions NP-complete∗

a single school, and a school has an individual maximum quota: the number of students assigned to a school cannot exceed 
a certain limit. In this paper, we use the terms “students” and “schools” to represent agents in our model, but our results 
can obviously be applied to other two-sided matching problems, such as matching medical residents to hospitals, cadets to 
military branches, workers to firms, and so on.

The theory of two-sided matching has been extensively developed.1 However, many real-world matching markets are 
subject to more general distributional constraints. For example, school districts might need at least a certain number of 
students in each school to operate, as in college admissions in Hungary [2], i.e., individual minimum quotas must be satisfied. 
Also, in the early 2000s, the United States Military Academy solicited cadet preferences over assignments to various branches 
and imposed minimum and maximum quotas on the number of students who could be assigned to each branch [25,
26]. Diversity constraints at schools can also be considered as a minimum quota problem, where students are divided 
into several types according to their socioeconomic status, and school districts impose a minimum quota for each type of 
students at each school. Furthermore, minimum/maximum quotas can be imposed on a set of schools (region) rather than 
on an individual school. One motivating example of this model is a hospital–resident matching problem. Assume a policy 
maker requires that a certain number of residents be assigned to hospitals on an isolated island. She also hopes to avoid 
an excessive concentration of residents in metropolitan areas. However, she does not want to interfere with how these 
residents are assigned within the hospitals on the island or in the metropolitan area.

Table 1 summarizes the existing works related to regional minimum/maximum quotas. We assume that individual max-
imum quotas are requisite since virtually all existing works assume the existence of individual maximum quotas.2 When 
considering regional quotas, we distinguish a special case where the regions have a hierarchical structure. When only in-
dividual maximum quotas are imposed, the standard Deferred Acceptance mechanism (DA) [8] is widely used because it 
is strategyproof and stable. Since stability is decomposed fairness and nonwastefulness, DA is fair and nonwasteful. Also, 
regional maximum quotas, in which regions have a hierarchical structure, are considered in [2,10,18]. Individual minimum 
quotas are considered in [7] and two DA-based strategyproof mechanisms are developed. However, as shown in Table 1, 
a number of interesting combinations remain unexplored, which we examine in this paper.

More specifically, we first analyze the complexity for checking whether a feasible matching (which satisfies all regional 
quotas) exists or not, when we put no restrictions on regions. We then prove that this problem is NP-complete. Since 
checking the existence of a feasible matching is intractable in general, we concentrate on a special case where regions have 
a hierarchical structure. As described in Table 1, we consider the most general case in this setting, where each region and 
each individual school can simultaneously impose both minimum and maximum quotas.

A hierarchical structure is ubiquitous in any company, university, or military organization. When such an organization 
as a company allocates human resources, it is natural to assume that the obtained matching must satisfy the feasibility 
constraints at various levels in the organization hierarchy; each division, department, or section, has its own minimum/max-
imum quotas. Such feasibility constraints can naturally be represented by regional quotas.

We develop two strategyproof mechanisms based on the DA, which we call Priority List based DA with Regional minimum 
and maximum Quotas (PLDA-RQ) and Round-robin Selection Deferred Acceptance with Regional minimum and maximum Quotas 
(RSDA-RQ). These mechanisms are inspired by two existing mechanisms that can handle regional maximum quotas [10,
18]. We say a matching is fair if no school wants to replace a student matched to it with another student who prefers 
to be matched with the school. Also, we say a matching is nonwasteful if student s wishes to be assigned to school c
but is not accepted, then there must be a plausible reason, i.e., moving s to c violates some maximum/minimum quotas. 
A matching which satisfies fairness and nonwastefulness is called stable matching.3 When regional quotas are imposed, 
a stable matching may no longer exist, i.e., fairness and nonwastefulness are incompatible. PLDA-RQ and RSDA-RQ are fair, 
thus the matchings obtained by these mechanisms can be wasteful. We show that the two mechanisms satisfy different 
versions of nonwastefulness respectively; each is weaker than the original nonwastefulness. Moreover, we compare our 
mechanisms with an artificial cap mechanism (in which regional quotas are removed by imposing artificial caps so that the 

1 See Roth and Sotomayor [24] for a comprehensive survey of many results in this literature.
2 If we set each individual quotas large enough, e.g., equal to the number of students, it becomes non-binding. Thus, we can represent a case without 

individual maximum quotas.
3 Technically, stability further requires individual rationality. However, in our environment where no agent is unacceptable, individual rationality is 

trivially satisfied. Based on this observation, we regard a stable matching as a fair and nonwasteful matching throughout the paper.



42 M. Goto et al. / Artificial Intelligence 235 (2016) 40–57
standard DA can be applied) via simulation experiments. Experimental results illustrate that our mechanisms have a clear 
advantage in terms of nonwastefulness and student welfare.

1.1. Related literature

There is substantial literature on two-sided matching [24]. In recent years, matching problems with some constraints 
have been broadly studied.

Kamada and Kojima [18] consider the residency matching problem in Japan, in which maximum quotas to regions 
(disjoint sets of schools) are imposed. They show that, with regional maximum quotas, a stable matching does not always 
exist, and propose a strategyproof mechanism that produces a matching that satisfies a weaker stability requirement. Goto et 
al. [10] also consider a matching problem with regional maximum quotas, and introduce another strategyproof mechanism 
that produces a matching taking schools’ competition in each region into account. Fragiadakis et al. [7] study school choice 
problems where each school/college needs a certain number of students for operation, i.e., individual minimum quotas. Our 
work is based on [7,10,18] and extends their mechanisms to handle regional minimum/maximum quotas.

Motivated by the matching system for higher education in Hungary, Biro et al. [2] consider two kinds of college admission 
problems; one is with individual minimum quotas, and the other is with regional maximum quotas. In both cases, they show 
that a stable matching may not exist and checking the existence of the one is NP-complete. On the other hand, they prove 
that, if the regional structure is hierarchical and the colleges in the same region have identical priorities, a variation of the 
DA can find stable matchings with regional maximum quotas. However, we cannot use their mechanisms in our settings 
since we assume that schools have heterogeneous priorities and regional minimum quotas are imposed.

Monte and Tumennasan [22] consider the problem of assigning agents to different projects, where each project needs 
more than a particular number of agents. In this problem, each project does not have a priority over agents. Thus, this model 
can be regarded as an extension of the house allocation problem rather than the matching problem between two-sided 
agents. They develop a strategyproof serial dictatorship mechanism for this setting. However, this mechanism cannot handle 
regional quotas.

Also, in the literature of computer science, several generalizations of the standard stable matching have been proposed, 
and the complexity of checking the existence of a (generalized) stable matching has been discussed [16]. Huang [16] con-
siders a hierarchical (laminar) system, which is different from our model. In [16], each applicant (student) is matched with 
an institute (school), where the applicants are classified into subgroups called classes. Minimum/maximum quotas are im-
posed on classes, but no quota is imposed on groups of institutes. By contrast, in our model, each student is matched with 
a school, and groups of schools (regions) have minimum/maximum quotas. Fleiner and Kamiyama [6] extend the model 
in [16] to many-to-many matching cases. Hamada et al. [14] also study matching with minimum quotas in the hospitals–
residents problem, showing that minimizing the number of blocking pairs is an NP-hard problem when minimum quotas 
are imposed. Our setting is different from these existing works since we handle regional quotas, and our complexity result 
is on checking the existence of a feasible matching. Also, these works do not discuss strategy issues, which is one of main 
concerns in our paper.

Minimum quotas are also discussed in a controlled school choice program [4,13,19,21]. However, models and theoretical 
properties in a controlled school choice program setting are quite different from the setting used in our paper. Kojima [19]
considers a model where students are divided into two types, i.e., minority and majority, and shows that setting hard-
bounds for the number of majority students may hurt the minority students. To overcome this shortcoming, Hafalir et al. 
[13] propose soft-bounds for the number of minority students. Kominers and Sönmez [21] consider a model where each 
seat/slot of one school has a different priority ranking for students. This model can represent certain types of affirmative 
action and can be considered a generalization of the model in [13]. Ehlers et al. [4] generalize the model in [13] to cases 
where the number of student types can be more than two. Ehlers et al. [4] show several impossibility results when these 
minimum quotas are hard constraints. They obtain positive results when these minimum quotas are soft bounds. Westkamp 
[27] analyzes complex (maximum) quota constraints in the German university admissions system, while Braun et al. [3]
conduct an experimental analysis of the same system. In our setting, students are not partitioned into different types. Thus, 
although minimum quotas are hard constraints, positive results have been obtained [7].

We use the framework of matching with contracts due to Hatfield and Milgrom [15].4 They identify a set of conditions 
for key results in matching with contracts. More specifically, if the choice function of every school satisfies three conditions 
(i.e., substitutability, the law of aggregate demand, and the irrelevance of rejected contracts) then a mechanism called gen-
eralized Deferred Acceptance (DA) mechanism finds a “stable” allocation, and the mechanism is strategyproof for students. 
There are several recent works related to a general framework for handling various distributional constraints. Kojima et al. 
[20] propose a general framework that can handle a general class of constraints (represented by matroidal constraints and 
an M�-concave function). Their framework provides an alternative method to [15] for proving the fact that the general-
ized DA is strategyproof. Although it is possible to apply their framework in our setting, we use a more familiar, standard 
framework based on [15]. Note that although Hatfield and Milgrom [15] and Kojima et al. [20] provide useful tool kits for 

4 Fleiner [5] obtains some of the results including the existence of a stable allocation in a framework that is more general than the model of Hatfield 
and Milgrom [15]. On the other hand, he does not show results regarding incentives, which are important for our purposes.
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proving that the generalized DA mechanism is strategyproof, developing a concrete mechanism that works for new types of 
constraints remains challenging; we need to appropriately design a choice function of schools so that their frameworks are 
applicable while the required design goals can be achieved. Goto et al. [11] present a general framework for handling more 
general class of constraints (beyond M�-concavity). Their mechanism (called Adaptive DA) is strategyproof and nonwasteful, 
but not fair. In this paper, we concentrate on fair mechanisms. Our new mechanisms are not an instance of their mechanism. 
Kamada and Kojima [17] also provide a general framework for handling (hierarchical) regional maximum quotas. However, 
their model does not consider regional minimum quotas. When only regional maximum quotas exist, our RSDA-RQ mecha-
nism can be considered as one instance of their mechanism. However, even in this case, our PLDA-RQ mechanism is not an 
instance of their mechanism. Yokoi [28] proposes another general framework, in which each school has a matroidal choice 
function, but without any distributional constraints between schools. In this paper, we consider a model where distributional 
constraints are imposed on a group of schools. Thus, we cannot apply the framework of Yokoi [28] to our model.

We develop mechanisms that can directly handle regional quotas. An alternative approach is to artificially modify indi-
vidual quotas so that all regional quotas can be automatically satisfied when individual quotas are satisfied. Then, we can 
apply any existing mechanisms that can handle only individual quotas. We call such a mechanism artificial cap mechanism. 
As long as artificial caps are determined independently from students’ preferences, an artificial cap mechanism is strate-
gyproof. Such a mechanism is used in the Japan Residency Matching Program, in which the capacities of hospitals in urban 
areas such as Tokyo are reduced so that more doctors will be forced to apply to hospitals in rural areas [18]. In Section 6, 
we show the advantage of our approach over the artificial cap mechanism.

The remainder of this paper is organized as follows. In Section 2, we first introduce a general model in which we do not 
put any restrictions on the regional structure. Next, in Section 3, we examine the complexity for checking the existence of 
a feasible matching for the general case and the hierarchical case. In Section 4, we describe the generalized DA mechanism 
and its properties. Then, Section 5 introduces our newly developed mechanisms. Next, Section 6 shows the advantage of our 
approach over the artificial cap mechanism via computer simulations. Finally, Section 7 concludes our paper.

2. Model

A market is a tuple (S, C, R, p, q, �S , �C , X, �PL). S = {s1, s2, . . . , sn} is a set of students, C = {c1, c2, . . . , cm} is a set of 
schools, and R = {r1, r2, . . .} is a set of regions, each of which is simply a set of schools r ∈ 2C \ {∅}. We assume |R|, i.e., the 
number of regions, is polynomial in |C |, i.e., the number of schools. We assume each region has its minimum/maximum 
quotas, i.e., p = (pr)r∈R and q = (qr)r∈R are the regional minimum and maximum quota vectors, where 0 ≤ pr ≤ qr for 
all r ∈ R . When r consists of a single school c, p{c}/q{c} represent the minimum/maximum quota for individual school 
pc/qc . Each student s has a strict preference relation �s over the schools, and each school c has an idiosyncratic strict 
priority relation �c over the students.5 The vectors of all such relations are denoted as �S= (�s)s∈S for the students 
and �C = (�c)c∈C for the schools. We assume that all schools are acceptable to all students and vice versa. Without this 
assumption, we cannot guarantee the existence of a feasible matching even if the number of students is large and the 
minimum quotas are small.6,7

We follow the model presented in [15], where a student and a school are matched by a contract.8 X = S × C is a set 
of all contracts, where (s, c) ∈ X represents a contract by which s is matched with c. A matching is expressed as a set of 
contracts X ′ ⊆ X . For any agent a ∈ S ∪ C , X ′

a denotes the set of contracts related to a in X ′ . Let X ′
r denote 

⋃
c∈r X ′

c . �PL
is a serial order over X called priority list, which represents a tie-breaking order among contracts. The priority list should 
respect the priority ordering of each school, i.e., the following condition holds: (s, c) �PL (s′, c) holds iff s �c s′ .

One simple and natural way to construct a priority list is to use the ranks of the students for each school and a 
tie-breaking ordering over schools. Let rankc(s) denote the rank of student s according to school c’s priority ordering on 
students. To be more precise, if s is ranked k-th from the top in c’s priority ordering, then rankc(s) = k. Let us assume the 
tie-breaking ordering is defined as c1 → c2 → . . . → cm . Given this tie-breaking ordering, we define each binary relation in 
priority list �PL as follows: for any s, s′ ∈ S and any ci, c j ∈ C , (s, ci) �PL (s′, c j) holds if one of the following conditions 
holds:

• rankci (s) < rankc j (s′), or
• rankci (s) = rankc j (s′) and i < j.

5 To be more precise, school c has a preference over sets of students. We assume c has a preference that is responsive with maximum quota qc [23], which 
is obtained by the strict priority relation over students �c .

6 This assumption is motivated by some real-life applications. For example, in many universities in Japan, an undergraduate student who majors in engi-
neering must be assigned to a laboratory to conduct a project, and the project is required for graduation. In this setting, every student can be assumed to 
be acceptable to every laboratory and vice versa. Also, this assumption would be reasonable for a public school choice problem. In some other applications, 
e.g., a hospital–resident matching, this assumption might be too demanding.

7 Considering the worst-case, to guarantee that a student is matched to some school, a student must submit her complete preference ordering (complete 
list) of all schools. Nevertheless, assume student s is matched to school c when she submits a complete list. Then, if she submits an incomplete list, 
in which schools worse than c are removed, the obtained matching is the same. Thus, we can expect our proposed mechanisms would work fine with 
incomplete lists as long as the list is sufficiently long.

8 The model presented in [15], a contract can contain other terms, e.g., wages or working hours, when matching a worker to a firm. Here, we assume a 
contract contains no other terms except the information of the related student/school.
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In other words, for two pairs of (s, c) and (s′c′), (s, c) �PL (s′, c′) holds if the ranking of s for c is strictly higher than 
that of s′ for c′ . If the rankings are the same, then the schools use tie-breaking ordering among schools. If there exists an 
organization or a consortium in which all hospitals are involved, it would be possible to agree on a more sophisticated 
method to generate a priority list.

We say X ′ is school-feasible if ∀r, pr ≤ |X ′
r | ≤ qr holds. We say X ′ is student-feasible if ∀s, |X ′

s| = 1 holds. Then, we 
say X ′ is feasible if it is student- and school-feasible. Also, we say X ′ is semi-school-feasible if there exists X ′′ ⊇ X ′ such 
that X ′′ is school-feasible. We say a mechanism is feasible if it produces a feasible matching for every possible profile of 
preferences and priorities.

A mechanism is a function that takes a profile of students’ preferences as input and returns a matching. We say a 
mechanism is strategyproof if no student ever has any incentive to misreport her preference, regardless what other students 
report.

We introduce several desirable properties of matchings and mechanisms.

Definition 1 (fairness). Given feasible matching X ′ , student s has justified envy toward s′ , if there exist (s, c), (s′, c′) ∈ X ′ , 
such that the following conditions hold: (i) c′ �s c and (ii) s �c′ s′ . We say that feasible matching X ′ is fair if no student 
has justified envy. We say a mechanism is fair if it always obtains a fair matching.

In words, student s has justified envy when she would rather be matched to school c′ than her current match c, and she 
has higher priority at c′ than student s′ who is assigned to c′ .

Definition 2 (nonwastefulness). Given feasible matching X ′ , student s claims an empty seat of c′ , if there exists (s, c) ∈ X ′
such that the following conditions hold: (i) c′ �s c, and (ii) matching X ′′ , which is obtained from X ′ by moving s from c to 
c′ , is feasible. More precisely, X ′′ is given as (X ′ ∪ {(s, c′)}) \ {(s, c)}. We say that feasible matching X ′ is nonwasteful if no 
student claims an empty seat. We say a mechanism is nonwasteful if it always obtains a nonwasteful matching.

In general, fairness and nonwastefulness cannot coexist when minimum/maximum quotas are imposed (even if there 
exist no regional maximum/minimum quotas), i.e., there exists a case where no matching is fair and nonwasteful [4,7,18], 
as shown in the following example.

Example 1. Assume S = {s1, s2}, C = {c1, c2, c3}, qc = 2 for all c ∈ C , pc1 = 1, and pc2 = pc3 = 0. The preferences of students 
are given as follows: c2 �s1 c3 �s1 c1, c3 �s2 c2 �s2 c1.

The priorities of schools are given as: s1 �c1 s2, s2 �c2 s1, s1 �c3 s2.

Here, c1 is the least popular school for both s1 and s2, but at least one student must be assigned to c1 since pc1 = 1. 
Assume s1 is allocated to c1. Then, s2 must be allocated to her most preferred school c3, or otherwise, s2 claims an empty 
seat of c3. However, then s1 has justified envy toward s2 since s1 �c3 s2. Similarly, assume s2 is allocated to c1. Then s1 must 
be allocated to her most preferred school c2, or otherwise, s1 claims an empty seat of c2. However, then s2 has justified 
envy toward s1 since s2 �c2 s1.

Let us introduce two conditions that are weaker than nonwastefulness.

Definition 3 (PL-nonwasteful). Student s, who is assigned to c, claims an empty seat of c′ by PL in feasible matching X ′ if: 
(i) c′ �s c, (ii) (X ′ \ {(s, c)}) ∪ {(s, c′)} is feasible, and (iii) (s, c′) �PL (s, c). A matching is PL-nonwasteful if no student claims 
an empty seat by PL. We say a mechanism is PL-nonwasteful if it always produces a PL-nonwasteful matching.

In words, the claim of student s for moving her from c to c′ is regarded as legitimate only when the priority list supports
this, i.e., (s, c′) �PL (s, c) holds.

Definition 4 (school-equitable-nonwastefulness). Student s, who is assigned to c, school-equitably claims an empty seat
of c′ in feasible matching X ′ if: (i) c′ �s c, (ii) (X ′ \ {(s, c)}) ∪ {(s, c′)} is feasible, and (iii) |X ′

c | − |X ′
c′ | ≥ 2. A matching 

is school-equitably-nonwasteful if no student school-equitably claims an empty seat. We say a mechanism is school-
equitably-nonwasteful if it always produces a school-equitably-nonwasteful matching.

In words, the claim of student s is regarded as legitimate only when moving s from c to c′ strictly decreases the 
imbalance of students among these schools.9

9 If minimum/maximum quotas of two schools are significantly different, requiring the balance between these schools might be meaningless. As discussed 
in [18], we can modify the definition such that the deviation from a certain ideal distribution is minimized. To be more precise, we assume for each school 
c, its target quota q̃c is defined, and condition (iii) is modified as (|X ′

c | − q̃c) − (|X ′
c′ | − q̃c′ ) ≥ 2.
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Assume in Example 1, the priority list is defined as: (s1, c1) �PL (s2, c2) �PL (s1, c3) �PL (s2, c1) �PL (s1, c2) �PL (s2, c3). 
This priority list is generated from schools’ priorities and a tie-breaking ordering c1 → c2 → c3. Then, X ′ = {(s1, c1), (s2, c2)}
is fair and PL-nonwasteful, since the claim of student s2 to move her from c2 to c1 is not supported by the priority list. X ′
is also fair and school-equitably-nonwasteful, since moving s2 from c2 to c1 does not strictly decrease the imbalance among 
c1 and c2.

PL-nonwastefulness and school-equitable-nonwastefulness are independent. A PL-nonwasteful matching can be not 
school-equitably-nonwasteful and vice versa. Let us consider the following example.

Example 2. Assume S = {s1, s2}, C = {c1, c2}, qc = 2 for all c ∈ C , and pc = 0 for all c ∈ C . Schools c1 and c2 form a region 
with regional maximum quota 2. The preferences of students are given as follows: c1 �s1 c2 and c2 �s2 c1. The priorities of 
schools are given as: s1 �c1 s2 and s1 �c2 s2. The priority list is given as: (s1, c1) �PL (s1, c2) �PL (s2, c1) �PL (s2, c2).

Here, X ′ = {(s1, c1), (s2, c1)} is PL-nonwasteful since the claim of student s2 to move her from c1 to c2 is not supported by 
the priority list, while it is not school-equitably-nonwasteful, since moving s2 from c1 to c2 strictly decreases the imbalance 
among c1 and c2. Assume the case where c1 �s2 c2. Then, X ′ = {(s1, c1), (s2, c2)} is school-equitably-nonwasteful, since 
moving s2 from c2 to c1 increases the imbalance among c1 and c2, but it is not PL-nonwasteful since the claim of student 
s2 to move her from c2 to c1 is supported by the priority list.

Let us introduce an alternative fairness requirement, which we call PL-fairness. This requirement is based on the under-
lining priority list. PL-fairness implies fairness.

Definition 5 (PL-fairness). Given feasible matching X ′ , student s has justified envy by PL toward s′ if there exist 
(s, c), (s′, c′) ∈ X ′ and (s, c′′) ∈ X \ X ′ , such that the following conditions hold: (i) c′′ �s c, (ii) (s, c′′) �PL (s′, c′), and (iii) 
(X ′ ∪ {(s, c′′)}) \ {(s′, c′)} is school-feasible. We say that feasible matching X ′ is PL-fair if no student has justified envy by 
PL. We say a mechanism is PL-fair if it always produces a PL-fair matching.

In words, student s has justified envy by PL in X ′ if s prefers c′′ over her current assigned school c, (s, c′′) has higher 
priority than (s′, c′) according to �PL , and the set of contracts obtained by removing (s′, c′) and adding (s, c′′) is school-
feasible. If we restrict our attention to the case where c′′ = c′ , this definition becomes identical to Definition 1. Intuitively, 
PL-fairness means that if student s wants a seat of school c′′ and student s′ wants a seat of school c′ , but giving these seats 
to both students will violate some quotas, then this competition must be settled based on the priority list.

3. Complexity of finding a feasible matching

3.1. General case

Given an instance of a market, the first question we need to answer is whether a feasible matching exists or not. In the 
model with only individual maximum/minimum quotas, this question is easy, i.e., it suffices to check whether 

∑
c∈C pc ≤ n ≤∑

c∈C qc holds. However, by introducing regional maximum/minimum quotas, this question becomes hard, i.e., it becomes 
NP-complete.

Theorem 1. Given S, C , R, p, and q, checking whether a feasible matching exists or not is NP-complete. This holds even for the case 
where ∀r ∈ R, |r| ≤ 3.

Proof. Clearly, for given matching X ′ , checking whether it satisfies all quotas can be done in O (|R| · |C |). Thus, this problem 
is in NP.

To show that this problem is NP-hard, we reduce an arbitrary 3-SAT problem instance to a matching problem with 
regional maximum/minimum quotas. 3-SAT consists of set of boolean variables V and set of clauses L. Each clause l is a 
disjunction of three literals, each of which is either boolean variable x ∈ V or its negation ¬x, e.g., x1 ∨ ¬x2 ∨ x3.

Now, for a given 3-SAT problem instance, we create an equivalent matching problem instance as follows. For each literal 
(i.e., x or ¬x), we create a school. A pair of x and ¬x forms a region, whose minimum/maximum quotas are 1. Also, for 
each l ∈ L, the schools in l form a region, whose minimum quota is 1. There are n students, where n = |V |.

Assume that there exists a feasible matching in this problem. Then, let us determine an instantiation of the variables as 
follows: if a student is assigned to x, x is TRUE (thus, ¬x is FALSE). If a student is assigned to ¬x, ¬x is TRUE (thus x is 
FALSE). Note that x and ¬x form a region, whose minimum/maximum quotas are 1. Thus, each student is assigned to either 
x or ¬x, but not both at the same time. Thus, the truth value of x is uniquely determined. Then, for each clause l, since its 
minimum quota is 1, at least one literal in l is TRUE. Thus, clause l is satisfied. Therefore, this 3-SAT instance is satisfiable. 
Also, if there exists no feasible matching, then, there exists no instantiation of the variables that satisfies all the clauses. 
Thus, this 3-SAT instance is unsatisfiable. �

Note that a regional maximum quota can be represented as a regional minimum quota and vice versa. For example, 
assume that there exists region r, whose minimum quota is pr . Then, we can replace it with complementary region r̄ = C \r, 
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Fig. 1. Example of tree structure.

whose maximum quota qr̄ = n − pr . This modified problem is equivalent to the original problem. Thus, the following theorem 
holds.

Theorem 2. Given S, C , R, p, and q, checking whether a feasible matching exists or not is NP-complete. This holds even for the case 
where (i) there exist only maximum quotas, or (ii) there exist only minimum quotas.

3.2. Hierarchical case

Since checking the existence of a feasible matching is intractable in general, in the rest of this paper, we concentrate on 
a special case where regions are hierarchical.10 A similar hierarchical model is used in [2,18].

Definition 6 (hierarchical region). We say set of regions R is hierarchical if ∀r, r′ ∈ R where r �= r′ , one of the following holds: 
(i) r ∩ r′ = ∅, (ii) r ⊂ r′ , or (iii) r′ ⊂ r.

If set of regions R is hierarchical, we can construct a tree that represents R . We assume that C , which is the region 
that contains all schools, is included in R . We also assume C has non-binding minimum quota pC = n and maximum quota 
qC = n, where n is the number of students. Furthermore, we assume for each c ∈ C , {c} ∈ R , i.e., for each school c ∈ C , there 
exists a region that consists of a single school c.

Definition 7 (tree). Tree T R for set of regions R is defined as follows: (i) root node C is the region that contains all the 
schools, (ii) leaf node {c} is a region that contains only one individual school c ∈ C , and (iii) for each node r ∈ R , where 
r �= C , its parent node r′ ∈ R is a region that is the proper inclusion-minimal superset of r.

Fig. 1 shows an example of a tree structure. Let children(r) denote a set of child nodes of r. For a leaf node, i.e., 
r = {c}, children(r) is ∅. It is clear that r = ⋃

r′∈children(r) r′ holds for |r| > 1. We often use the terms “node” and “region” 
interchangeably.

In contrast to the general case, in a hierarchical model, checking the existence of a feasible matching can be done in 
linear time, i.e., the following theorem holds.

Theorem 3. Given S, C , R, p, q, and T R , checking whether a feasible matching exists or not is solved in time linear in the number of 
nodes in T R .

Proof. A procedure for solving this problem can be described as follows. First, we revise pr in a depth-first manner so that 
pr is replaced by:

max

⎛
⎝pr,

∑
r′∈children(r)

pr′

⎞
⎠ .

10 If we ignore computational costs and fairness, we can apply the strategyproof mechanism proposed in [11] when regions are non-hierarchical.
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Similarly, we revise qr in a depth-first manner so that qr is replaced by:

min

⎛
⎝qr,

∑
r′∈children(r)

qr′

⎞
⎠ .

Finally, we check whether pr ≤ qr holds for all r ∈ R . If this is the case, a feasible matching exists. Otherwise, there exists 
no feasible matching.

It is clear that if pr <
∑

r′∈children(r) pr′ , it is non-binding and can be replaced by 
∑

r′∈children(r) pr′ . It is also clear that if 
qr >

∑
r′∈children(r) qr′ , it is non-binding and can be replaced by 

∑
r′∈children(r) qr′ . If pr > qr holds for some r, it is clear that 

there exists no feasible matching. Also, if pr ≤ qr holds for all r, and pC , qC = n holds at root node C , starting from the root 
node, we can divide n students into several groups and pass one group to one child, so that its regional minimum/maxi-
mum quotas are satisfied. By recursively doing this, we can find the assignments of all individual schools, which satisfy all 
minimum/maximum quotas.

It is obvious that this procedure finishes in time linear in the number of nodes in T R . �
In the rest of this paper, we assume regions are hierarchical and

∑
r′∈children(r)

pr′ ≤ pr ≤ qr ≤
∑

r′∈children(r)

qr′

holds for all r ∈ R . Note that the tree in Fig. 1 satisfies this condition.

4. Generalized DA

In this section, we introduce a skeleton of a mechanism called generalized Deferred Acceptance (DA) mechanism [15]
and its properties. This mechanism uses choice functions ChS : 2X → 2X and ChC : 2X → 2X . For each student s, its choice 
function Chs(X ′) chooses {x}, where x = (s, c) ∈ X ′

s such that c is her most preferred school within X ′
s (we assume Chs(X ′) =

∅ if X ′
s = ∅). Then, the choice function of all students is given as: ChS (X ′) := ⋃

s∈S Chs(X ′). There are alternative ways to 
define the choice function of schools ChC . As we discuss in the next section, our two mechanisms, PLDA-RQ and RSDA-RQ, 
can be expressed by the generalized DA with different formulations of ChC .

Formally, the generalized DA is defined as follows.

Mechanism 1 (generalized DA).

1. Re ← ∅.
2. X ′ ← ChS(X \ Re), X ′′ ← ChC (X ′).
3. If X ′ = X ′′ then return X ′ , otherwise, Re ← Re ∪ (X ′ \ X ′′), go to 2.

Here, Re is a set of rejected contracts. Students cannot choose contracts in Re. Initially, Re is empty. Thus, each student 
can choose her most preferred school. The chosen set by students is X ′ . Then, schools choose X ′′ , which is a subset of X ′ . If 
X ′ = X ′′ , i.e., no contract is rejected by the schools, the mechanism terminates. Otherwise, the mechanism updates Re and 
repeats the same procedure.

Hatfield and Milgrom [15] define a notion of stability for a matching, which we call HM-stability in this paper.11

Definition 8 (HM-stability). A matching X ′ ⊆ X is said to be HM-stable if X ′ satisfies (i) X ′ = ChS(X ′) = ChC (X ′) and (ii) 
there is no contract (s, c) ∈ X \ X ′ such that (s, c) ∈ ChS (X ′ ∪ {(s, c)}) and (s, c) ∈ ChC (X ′ ∪ {(s, c)}).

Let X denote all HM-stable matchings. We say X ′ ∈X is the student-optimal HM-stable matching if all students weakly 
prefer X ′ over any other matching in X .

For ChC , we require that the following three proprieties hold.

Irrelevance of rejected contracts: For any X ′ ⊆ X and x ∈ X \ X ′ , ChC (X ′) = ChC (X ′ ∪ {x}) holds if x /∈ ChC (X ′ ∪ {x}). In 
words, this condition requires when adding x to X ′ , if x is not accepted, then x does not affect the outcomes of 
other contracts in X ′ .

Law of aggregate demand: For any X ′, X ′′ ⊆ X with X ′ ⊆ X ′′ , |ChC (X ′)| ≤ |ChC (X ′′)| holds. In words, this condition requires 
that the number of accepted contracts weakly increases when more contracts are added.

11 Hatfield and Milgrom [15] as well as many others define stability in such a way that a block by a coalition that includes multiple students is allowed. 
Such a concept is identical to our definition if the schools have substitutable preferences.
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Substitutes condition: For any X ′, X ′′ ⊆ X with X ′ ⊆ X ′′ , X ′ \ ChC (X ′) ⊆ X ′′ \ ChC (X ′′) holds. In words, this condition re-
quires that if contract x is rejected in X ′ , then it is also rejected when more contracts are added to X ′ .

Hatfield and Milgrom [15] show that if ChC satisfies these three properties, the generalized DA is strategyproof, and the 
obtained matching is the student-optimal HM-stable matching.12

To show that ChC satisfies the above three properties, it is often convenient to use a property called single-improvement 
property, which was first proposed in [12].

Definition 9 (single-improvement property). We say ChC satisfies the single-improvement property if for any X ′ ⊆ X , x ∈ X \ X ′ , 
one of the following conditions holds: (i) ChC (X ′ ∪ {x}) = ChC (X ′), (ii) ChC (X ′ ∪ {x}) = ChC (X ′) ∪ {x}, or (iii) ChC (X ′ ∪ {x}) =
(ChC (X ′) \ {y}) ∪ {x}, where y ∈ ChC (X ′).

In words, the single-improvement property means, by adding contract x to X ′ , the chosen set of contracts ChC (X ′ ∪{x}) is 
unchanged, i.e., it is the same as ChC (X ′), or x is simply added to ChC (X ′), or x is added while single contract y is removed 
from ChC (X ′).

The following lemma holds.

Lemma 1. If ChC satisfies the single-improvement property, it also satisfies the irrelevance of rejected contracts, the law of aggregated 
demand, and the substitutes condition. Thus, the generalized DA is strategyproof and obtains the student-optimal HM-stable matching.

Proof. From Definition 9, it is clear that for any X ′ ⊆ X and x ∈ X \ X ′ , if x /∈ ChC (X ′ ∪ {x}), ChC (X ′) = ChC (X ′ ∪ {x}) holds. 
Thus, the irrelevance of rejected contracts holds. Also, from Definition 9, by adding new contract x, the size of the chosen 
set of contracts is weakly increasing. Thus, the law of aggregate demand holds. Furthermore, from Definition 9, if y ∈
X ′ \ ChC (X ′), then y /∈ ChC (X ′ ∪ {x}) holds. Thus, the substitutes condition holds. �
5. Mechanism with regional minimum and maximum quotas

We first introduce a concept called expected minimum count, which is convenient for checking semi-school-feasibility.

5.1. Expected minimum count

In a DA-based mechanism, we need to check whether matching X ′ is semi-school-feasible or not. In an existing work for 
handling minimum quotas [7], minimum quotas are transformed into maximum quotas in order to check the semi-school-
feasibility of X ′ . To be more precise, minimum quota pr of r is transformed as maximum quota n − pr of r̄ = C \ r, where n
is the number of students. We assume X ′ is semi-school-feasible if it satisfies all (i.e., original and transformed) maximum 
quotas.

However, when regional/individual minimum/maximum quotas coexist, we cannot apply this simple transformation 
method due to the interaction among these quotas. For example, let us consider the tree structure presented in Fig. 1, 
but the maximum quota of c1 is 4, and the minimum quota of c2 is 2. There exist students s1, . . . , s8. Assume X ′ =
{(s1, c1), (s2, c1), (s3, c1), (s4, c1)}. X ′ satisfies all of the original maximum quotas. Also, the individual minimum quota of 
c2 is transformed into a maximum quota, which requires that the number of students assigned to schools except c2 is at 
most n − 2 = 6. X ′ satisfies this transformed maximum quota since the number of students assigned to schools except c2
is 4 < 6. However, X ′ is not semi-school-feasible. Since the regional maximum quota of {c1, c2} is 5, by assigning 4 stu-
dents to c1, only one more student can be assigned to r, which is not enough to satisfy the minimum quota of c2. When 
regional/individual minimum/maximum quotas coexist, we need to consider the interaction among these quotas to check 
the semi-school-feasibility of the contracts.

We define an expected minimum count as follows.

Definition 10 (expected minimum count). For matching X ′ , the expected minimum count for each r, denoted by er(X ′), is 
defined as follows:

er(X ′) :=
{ |X ′

r | if |r| = 1,∑
r′∈children(r) max

(
er′(X ′), pr′

)
otherwise.

Intuitively, er(X ′) represents the minimum number of students allocated to region r when all regions r′ � r satisfy their 
minimum quotas. By this definition, for each region r, er(X ′) ≥ |X ′

r | holds. Also, er(X ′) = |X ′
r | holds iff all regions r′ � r

satisfy their minimum quotas. Furthermore, for any X ′, X ′′ ⊆ X , if X ′ ⊆ X ′′ , then er(X ′) ≤ er(X ′′) holds for all r ∈ R .

12 To be more precise, Hatfield and Milgrom [15] implicitly assume the irrelevance of rejected contracts throughout their analysis. Aygün and Sönmez [1]
point this out and show that this condition is important for the conclusions of Hatfield and Milgrom [15].
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The following theorem holds.

Theorem 4. For a matching X ′ ⊆ X, it is semi-school-feasible iff er(X ′) ≤ qr holds for all r ∈ R.

Proof. We first show if X ′ is semi-school-feasible, then er(X ′) ≤ qr holds for all r ∈ R . By way of contradiction, assume 
X ′′ ⊇ X ′ holds, where X ′′ is school feasible, but there exists r such that er(X ′) > qr . Since X ′′ is school-feasible, |X ′′

r | ≤ qr

holds. Also, since X ′′ satisfies all minimum quotas, er(X ′′) = |X ′′
r | holds. However, since X ′′ ⊇ X ′ , |X ′′

r | = er(X ′′) ≥ er(X ′) > qr

holds. Such an X ′′ does not exist. This is a contradiction.
Next, we show if er(X ′) ≤ qr holds for all r ∈ R , then X ′ is semi-school-feasible. We consider the following two cases: (i) 

|X ′| = n and (ii) |X ′| < n. In case (i), for all r ∈ R , |X ′
r | ≤ er(X ′) ≤ qr holds. Since |X ′| = eC (X ′) = n holds, all regions r � C

satisfy their minimum quotas. Thus, X ′ is school-feasible. In case (ii), there exists at least one region r whose minimum 
quota is not satisfied yet. Then, we can find school c ∈ r and student s who is not assigned in X ′ such that er(X ′ ∪ {(s, c)}) ≤
qr holds for all r ∈ R , by a similar argument used in the proof of Theorem 3. �

In the previous example, e{c1,c2}(X ′) = 4 + 2 = 6 > 5 = q{c1,c2} . Thus, X ′ is not semi-school-feasible.

5.2. Priority list based deferred acceptance mechanism with regional minimum and maximum quotas

This subsection introduces a strategyproof mechanism called Priority List based Deferred Acceptance mechanism with Regional 
minimum and maximum Quotas (PLDA-RQ). This mechanism uses a similar idea to Goto et al. [10], who develop a mechanism 
that can handle regional maximum quotas.

The choice function ChC of PLDA-RQ is given as follows.

Definition 11 (choice function of schools ChC (X ′) of PLDA-RQ).

1. Initialize Y to ∅.
2. Sort X ′ according to �PL .
3. For i = 1, 2, . . . , |X ′|, choose (s, c), which is the i-th element in X ′ , and apply the following procedure.

• If for all r, er(Y ∪ {(s, c)}) ≤ qr , then add (s, c) to Y .
4. Return Y .

PLDA-RQ is defined as one instance of the generalized DA mechanism in which ChC is given as Definition 11.
The calculation of ChC is a greedy procedure whose time-complexity is polynomial in |X ′| and |R|. Since Re monotonically 

increases in Mechanism 1, PLDA-RQ repeats at most O (|S| · |C |) rounds. Thus, its time-complexity is polynomial in |S| and 
|C |.

Example 3. Consider the tree structure presented in Fig. 1. There are eight students, S = {s1, . . . , s8}.
The preferences and priorities are defined as follows:

�s1 ,�s2 ,�s3 : c4 c3 c2 c1,

�s4 ,�s5 ,�s6 : c4 c1 c2 c3,

�s7 ,�s8 : c1 c2 c3 c4,

�c1 ,�c3 : s1 s2 s3 s4 s5 s6 s7 s8,

�c2 ,�c4 : s8 s7 s6 s5 s4 s3 s2 s1.

�PL is generated by the rank-based method with tie-breaking ordering c1 → c2 → c3 → c4.
In the first execution of Line 2 of Mechanism 1, each student chooses her most preferable contract, i.e., X ′ is set to the 

following:

X ′ := { (s6, c4), (s5, c4), (s4, c4), (s3, c4), (s7, c1), (s2, c4), (s8, c1), (s1, c4) },
where X ′ is sorted according to the priority list. (s6, c4), (s5, c4), (s4, c4) are sequentially chosen and added to Y . However, 
when (s3, c4) is chosen, e{c4}(Y ∪ {(s3, c4)}) = 4 > 3 = q{c4} . Hence, (s3, c4) is rejected. Similarly, (s2, c4), (s1, c4) are also 
rejected, while (s7, c1), (s8, c1) are added to Y . Thus, we obtain X ′′ = X ′ \ {(s1, c4), (s2, c4), (s3, c4)}. Since X ′ �= X ′′ , we set 
Re to {(s1, c4), (s2, c4), (s3, c4)} and repeat the procedure.

In the second execution of Line 2, each student chooses her most preferred contract that is not included in Re. X ′ is set 
to the following:

X ′ := { (s1, c3), (s2, c3), (s3, c3), (s6, c4), (s5, c4), (s4, c4), (s7, c1), (s8, c1) }.
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(s1, c3), (s2, c3), (s3, c3), (s6, c4), (s5, c4) are sequentially chosen and added to Y . However, when (s4, c4) is chosen, it is 
rejected since e{c3,c4}(Y ∪ {(s4, c4)}) = 6 > 5 = q{c3,c4} . Then, (s7, c1), (s8, c1) are chosen and added to Y . Thus, we obtain 
X ′′ = X ′ \ {(s4, c4)}. Since X ′ �= X ′′ , we set Re to Re ∪ {(s4, c4)} and repeat the procedure.

In the third execution of Line 2, X ′ is set to the following:

X ′ := { (s1, c3), (s2, c3), (s3, c3), (s6, c4), (s4, c1), (s5, c4), (s7, c1), (s8, c1) }.
All the contracts except (s8, c1) are sequentially chosen and added to Y . Then, (s8, c1) is rejected since eC (Y ∪ {(s8, c1)}) =
9 > 8 = qC . Thus, we obtain X ′′ = X ′ \ {(s8, c1)}. We set Re to Re ∪ {(s8, c1)} and repeat the procedure.

In the fourth execution of Line 2, X ′ is set to the following:

X ′ := { (s8, c2), (s1, c3), (s2, c3), (s3, c3), (s6, c4), (s4, c1), (s5, c4), (s7, c1) }.
Now, X ′ is school-feasible and X ′′ = X ′ . Thus, the mechanism returns this X ′ as output, and terminates.

We show the properties that PLDA-RQ satisfies.

Lemma 2. The choice function ChC of PLDA-RQ satisfies the single-improvement property.

Proof. For X ′ ⊆ X and x = (s, c) ∈ X , let Preceding(X ′, x) denote {y ∈ X ′ | y �PL x} and Succeeding(X ′, x) denote {y ∈
X ′ | x �PL y}. When calculating ChC (X ′ ∪ {x}), it is clear that adding x does not affect the outcome of each contract in 
Preceding(X ′, x). Also, if x is not accepted, then adding x does not affect the outcome of each contract in Succeeding(X ′, x). 
Thus, if x is not accepted, ChC (X ′ ∪ {x}) = ChC (X ′), i.e., condition (i) in Definition 9, holds.

Assume x is accepted. If no contract in Succeeding(X ′, x) ∩ChC (X ′) is rejected, i.e., Succeeding(X ′, x) ∩ChC (X ′) ⊆ ChC (X ′ ∪
{x}), then it is clear that no contract in Succeeding(X ′, x) \ ChC (X ′) is accepted. Thus, ChC (X ′ ∪ {x}) = ChC (X ′) ∪ {x}, i.e., 
condition (ii) in Definition 9, holds.

Assume there exists contract y = (s′, c′) ∈ Succeeding(X ′, x) ∩ ChC (X ′) that is rejected, i.e., y /∈ ChC (X ′ ∪ {x}). If there exist 
multiple rejected contracts, we choose the one that has the highest priority in �PL . Let Y denote ChC (X ′) ∩ Preceding(X ′, y). 
By our definition of y and Y , Y ⊆ ChC (X ′) and Y ⊆ ChC (X ′ ∪ {x}) hold. Then, there must exist region r that satisfies the 
following properties: c, c′ ∈ r, er(Y ) = qr − 1, er(Y ∪ {y}) = er(Y ∪ {x}) = qr , er(Y ∪ {x, y}) = qr + 1, for all r′ ∈ Path(r, c), pr′ ≤
er′(Y ), and for all r′ ∈ Path(r, c′), pr′ ≤ er′ (Y ), where Path(r, c) = {r′ � r | r′ � c}, i.e., nodes that are on the path from leaf 
node c to r. In words, r is the region whose expected minimum count becomes full by either accepting x or y in addition 
to Y .

Let us examine the outcome of contract z = (s′′, c′′) in Succeeding(X ′, y). If c′′ /∈ r, then er′ (Y ∪ {y, z}) = er′ (Y ∪ {x, z})
holds for all r′ � c. Thus, the outcomes of z under X ′ and X ′ ∪ {x} must be identical. Also, if c′′ = c or c′′ = c′ , z is rejected 
both in ChC (X ′) and ChC (X ′ ∪{x}). Thus, assume c′′ ∈ r, and c′′ is different from c and c′ . In this case, z is accepted in ChC (X ′)
iff by adding z, the values of er′ for all r′ ∈ Path(r, c′′) ∩ (Path(r, c) ∪ Path(r, c′)) do not increase (since if this happens, then 
er(Y ∪{y, z}) > qr holds) and er′ (Y ∪{y, z}) ≤ qr′ holds for all r′ ∈ Path(r, c′′) \ (Path(r, c) ∪Path(r, c′)). Similarly, z is accepted 
in ChC (X ′ ∪ {x}) iff by adding z, the values of er′ for all r′ ∈ Path(r, c′′) ∩ (Path(r, c) ∪ Path(r, c′)) does not increase (since 
if this happens, then er(Y ∪ {x, z}) > qr holds) and er′ (Y ∪ {x, z}) ≤ qr′ holds for all r′ ∈ Path(r, c′′) \ (Path(r, c) ∪ Path(r, c′)). 
However, er′(Y ∪ {y, z}) = er′(Y ∪ {x, z}) holds for all r′ ∈ Path(r, c′′) \ (Path(r, c) ∪ Path(r, c′)). Thus, the outcomes of z under 
X ′ and X ′ ∪ {x} must be identical. In conclusion, ChC (X ′ ∪ {x}) = (ChC (X ′) ∪ {x}) \ {y}, i.e., condition (iii) in Definition 9, 
holds. �

From Lemmas 1 and 2, we can immediately obtain the following theorem.

Theorem 5. PLDA-RQ is strategyproof.

Also, the following theorem holds.

Theorem 6. PLDA-RQ always produces a feasible and fair matching.

Proof. Assume X ′ , which is the matching obtained by PLDA-RQ, is not feasible. By the definition of the generalized DA 
mechanism, X ′ is semi-school-feasible. Thus, the only possibility that X ′ is not feasible is that some student s is not assigned 
to any school. Since X ′ is semi-school-feasible, we can choose contract x = (s, c) such that X ′ ∪ {x} is semi-school-feasible. 
Then, it is clear that x ∈ ChS (X ′ ∪ {x}) and x ∈ ChC (X ′ ∪ {x}) hold. This contradicts the fact that X ′ is HM-stable.

Assume X ′ is not fair. Then, there exist (s, c), (s′, c′) ∈ X ′ , such that c′ �s c and s �c′ s′ hold. Since we assume �PL
respects �c′ , (s, c′) �PL (s′, c′) holds. Then, it is clear that (s, c′) ∈ ChS (X ′ ∪ {(s, c′)}) and (s, c′) ∈ ChC (X ′ ∪ {(s, c′)}) hold. This 
contradicts the fact that X ′ is HM-stable. �

From the incompatibility of fairness and nonwastefulness, PLDA-RQ is wasteful since it is fair. We can see in Example 3, 
s1, s2, and s3 claim an empty seat of c4.



M. Goto et al. / Artificial Intelligence 235 (2016) 40–57 51
Theorem 7. PLDA-RQ is PL-nonwasteful.

Proof. By way of contradiction, assume in matching X ′ , which is obtained by PLDA-RQ, there exist (s, c) ∈ X ′ , (s, c′) ∈ X \ X ′ , 
such that c′ �s c, (s, c′) �PL (s, c), and (X ′ ∪ {(s, c′)}) \ {(s, c)} is feasible. Then, it is clear that (s, c′) ∈ ChS(X ′ ∪ {(s, c′)}) and 
(s, c′) ∈ ChC (X ′ ∪ {(s, c′)}) hold. This contradicts the fact that X ′ is HM-stable. �
Theorem 8. PLDA-RQ is PL-fair.

Proof. Assume X ′ , which is obtained by PLDA-RQ, is not PL-fair. Then, there exist (s, c′′) ∈ X \ X ′ , (s, c), (s′, c′) ∈ X ′ , such 
that c′′ �s c, (s, c′′) �PL (s′, c′), and (X ′ ∪ {(s, c′′)}) \ {(s′, c′)} is school-feasible. Then, it is clear that (s, c′′) ∈ ChS (X ′ ∪ {(s, c′′)})
and (s, c′′) ∈ ChC (X ′ ∪ {(s, c′′)}) hold. This contradicts the fact that X ′ is HM-stable. �

Furthermore, the following lemma holds.

Lemma 3. Feasible matching X ′ is HM-stable iff it is PL-fair and PL-nonwasteful.

Proof. We first show if X ′ is HM-stable, then it is PL-fair and PL-nonwasteful. We already showed that HM-stability implies 
PL-fairness and PL-nonwastefulness in the proofs of Theorems 7 and 8.

Next, we show PL-fairness and PL-nonwastefulness implies HM-stability. By way of contradiction, let us assume feasible 
matching X ′ is PL-fair and PL-nonwasteful, but there exists (s, c) ∈ X \ X ′ such that (s, c) ∈ ChS(X ′ ∪ {(s, c)}) and (s, c) ∈
ChC (X ′ ∪ {(s, c)}). Assume (s, c′′) ∈ X ′ . Since X ′ is feasible, |X ′| = n. Also, ChC satisfies the single-improvement property, 
there must be exactly one contract (s′, c′) ∈ X ′ such that ChC (X ′ ∪ {(s, c)}) = X ′ \ {(s′, c′)} ∪ {(s, c)} holds.

It is clear that c �s c′′ holds. If c′ = c, then s has justified envy. Thus, let us assume c′ �= c holds. If s = s′ , (s′, c′) must 
be identical to (s, c′′). Then, (s, c) �PL (s, c′) holds and X ′ \ {(s, c′)} ∪ {(s, c)} is feasible. Thus, s claims an empty seat by PL. 
Thus, let us assume s �= s′ . Then, (s, c) �PL (s′, c′) holds and X ′ \ {(s′, c′)} ∪ {(s, c)} is school-feasible. Thus, s has justified 
envy by PL toward s′. �

From Theorems 7, 8, and Lemma 3, we can immediately derive the following theorem.

Theorem 9. PLDA-RQ obtains the student-optimal PL-fair and PL-nonwasteful matching.

5.3. Round-robin selection deferred acceptance mechanism with regional minimum and maximum quotas

This subsection introduces a strategyproof mechanism called Round-robin Selection Deferred Acceptance mechanism with 
Regional minimum and maximum Quotas (RSDA-RQ). This mechanism uses a similar idea to the Flexible Deferred Acceptance 
mechanism presented in [18].

We assume a round-robin ordering of schools is defined. If the ordering is c1 → c2 → . . . → cm , c1 is chosen first, c2 is 
chosen next, and so on. After each of m schools are chosen, then c1 is chosen again, then, c2 is chosen again, and so on. In 
RSDA-RQ, the choice function of schools is defined as follows.

Definition 12 (choice function of schools ChC (X ′) of RSDA-RQ).

1. Initialize Y to ∅.
2. If each contract in X ′ is either in Y or has been rejected, return Y . Otherwise, choose school c according to the 

round-robin ordering.
3. Choose a contract (s, c), which is not included in Y or has not been rejected yet, and s has the highest priority according 

to �c .
4. If for all r ∈ R , er(Y ∪ {(s, c)}) ≤ qr , add (s, c) to Y . Otherwise, reject (s, c).
5. Go to 2.

RSDA-RQ is defined as one instance of the generalized DA mechanism in which ChC is given as Definition 12.
The calculation of ChC is a greedy procedure whose time-complexity is polynomial in |X ′| and |R|. Since Re monotonically 

increases in Mechanism 1, RSDA-RQ repeats at most O (|S| · |C |) rounds. Thus, its time-complexity is polynomial in |S| and 
|C |.

Example 4. Consider the same setting as in Example 3. In the first execution of Line 2 of Mechanism 1, each student chooses 
her most preferable contract, i.e., X ′ is set to the following:

X ′ := { (s7, c1), (s6, c4), (s8, c1), (s5, c4), (s4, c4), (s3, c4), (s2, c4), (s1, c4) },
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where X ′ is sorted according to the choice order in ChC . (s7, c1), (s6, c4), (s8, c1), (s5, c4), (s4, c4) are sequentially chosen 
and added to Y . However, when (s3, c4) is chosen, e{c4}(Y ∪ {(s3, c4)}) = 4 > 3 = q{c4} . Hence, (s3, c4) is rejected. Simi-
larly, (s2, c4), (s1, c4) are also rejected. Thus, we obtain X ′′ = X ′ \ {(s1, c4), (s2, c4), (s3, c4)}. Since X ′ �= X ′′ , we set Re to 
{(s1, c4), (s2, c4), (s3, c4)} and repeat the procedure.

In the second execution of Line 2, each student chooses her most preferred contract that has not been rejected by C , i.e., 
X ′ is set to the following:

X ′ := { (s7, c1), (s1, c3), (s6, c4), (s8, c1), (s2, c3), (s5, c4), (s3, c3), (s4, c4) }.
(s7, c1), (s1, c3), (s6, c4), (s8, c1), (s2, c3), (s5, c4), (s3, c3) are sequentially chosen and added to Y . However, when (s4, c4) is 
chosen, it is rejected since e{c3,c4}(Y ∪ {(s4, c4)}) = 6 > 5 = q{c3,c4} . Thus, we obtain X ′′ = X ′ \ {(s4, c4)}. Since X ′ �= X ′′ , we 
set Re to Re ∪ {(s4, c4)} and repeat the procedure.

In the third execution of Line 2, X ′ is set to the following:

X ′ := { (s4, c1), (s1, c3), (s6, c4), (s7, c1), (s2, c3), (s5, c4), (s8, c1), (s3, c3) }.
All the contracts except (s3, c3) are sequentially chosen and added to Y . Then, (s3, c3) is rejected since eC (Y ∪ {(s3, c3)}) =
9 > 8 = qC . Thus, we obtain X ′′ = X ′ \ {(s3, c3)}. We set Re to Re ∪ {(s3, c3)} and repeat the procedure.

In the fourth execution of Line 2, X ′ is set to the following:

X ′ := { (s4, c1), (s3, c2), (s1, c3), (s6, c4), (s7, c1), (s2, c3), (s5, c4), (s8, c1) }.
Now, X ′ is school-feasible and X ′′ = X ′ . Thus, the mechanism returns this X ′ as output, and terminates.

We show the properties that RSDA-RQ satisfies.

Lemma 4. ChC used in RSDA-RQ satisfies the single-improvement property.

Proof. Assume x = (s, c) is added to X ′ . Let us assume some contract in X ′
c is rejected, i.e., there exists (s′, c) ∈ X ′

c such 
that (s′, c) /∈ ChC (X ′). More specifically, let us assume top k(< |X ′

c|) contracts in X ′
c according to �c are accepted and the 

rest are rejected. Then, by adding x, it is clear that still top k contracts in X ′
c ∪ {x} according to �c are accepted and the rest 

are rejected. Also, the outcomes of contracts related to other schools do not change. If x is accepted, i.e., it is within top k
contracts in X ′

c ∪ {x}, then ChC (X ′ ∪ {x}) = (ChC (X ′) ∪ {x}) \ {y}, i.e., condition (iii) in Definition 9, holds, where y is k + 1-th 
contract in X ′

c ∪ {x}. If x is rejected, then ChC (X ′ ∪ {x}) = ChC (X ′), i.e., condition (i) in Definition 9, holds.
Next, let us assume all contracts in X ′

c are accepted. Then, by adding x = (s, c), still top |X ′
c| contracts are accepted. Let 

x′ = (s′, c) denote the last contract in X ′
c ∪ {x} according to �c . If x′ is rejected, then the outcomes of contracts related to 

other schools do not change. Thus, ChC (X ′ ∪ {x}) = (ChC (X ′) ∪ {x}) \ {x′}, i.e., condition (iii) in Definition 9, holds. Assume 
x′ is accepted. Let Pre denote contracts that are examined before x′ when calculating ChC (X ′ ∪ {x}) in the procedure of 
Definition 12, and Suc denote contracts that are examined after x′ .13 If no contract in Suc ∩ ChC (X ′) is rejected, i.e., Suc ∩
ChC (X ′) ⊆ ChC (X ′ ∪ {x}), then it is clear that no contract in Suc \ ChC (X ′) is accepted. Thus, ChC (X ′ ∪ {x}) = ChC (X ′) ∪ {x}, 
i.e., condition (ii) in Definition 9, holds.

Assume there exists contract y = (s′, c′) ∈ Suc ∩ ChC (X ′) that is rejected, i.e., y /∈ ChC (X ′ ∪ {x}). If there exist multiple 
rejected contracts, we choose the one that is examined earlier. Let X ′′ denote (X ′ ∪{x}) \{x′}, i.e., X ′′ is obtained by replacing 
x′ to x (if x = x′ , we assume X ′ = X ′′). Since |X ′

c| = |X ′′
c |, X ′

c ⊂ ChC (X ′), and X ′′
c ⊂ ChC (X ′′) hold, the outcomes of contracts 

related to other schools are the same between ChC (X ′) and ChC (X ′′). Thus, ChC (X ′) ∪ {x} = ChC (X ′′) ∪ {x′} holds.
Let Y denote ChC (X ′′) ∩ Pre. By our definition of y and Y , Y ⊆ ChC (X ′′) and Y ⊆ ChC (X ′′ ∪ {x′}) hold. Then, there must 

exist region r that satisfies the following properties: c, c′ ∈ r, er(Y ) = qr − 1, er(Y ∪ {y}) = er(Y ∪ {x′}) = qr , er(Y ∪ {x′, y}) =
qr +1, for all r′ ∈ Path(r, c), pr′ ≤ er′ (Y ), and for all r′ ∈ Path(r, c′), pr′ ≤ er′ (Y ). Here, as in the proof of Lemma 2, Path(r, c) =
{r′ � r | r′ � c}, i.e., nodes that are on the path from leaf node c to r. In words, r is the region whose expected minimum 
count becomes full by either accepting x′ or y in addition to Y .

Let us examine the outcome of contract z = (s′′, c′′) in Suc. If c′′ /∈ r, then er′(Y ∪ {y, z}) = er′(Y ∪ {x′, z}) holds for all 
r′ � c. Thus, the outcomes of z under X ′′ and X ′′ ∪ {x′} must be identical. Also, if c′′ = c or c′′ = c′ , z is rejected both in 
ChC (X ′′) and ChC (X ′′ ∪ {x′}). Thus, assume c′′ ∈ r, and c′′ is different from c and c′ . In this case, z is accepted in ChC (X ′′)
iff by adding z, the values of er′ for all r′ ∈ Path(r, c′′) ∩ (Path(r, c) ∪ Path(r, c′)) do not increase (since if this happens, then 
er(Y ∪{y, z}) > qr holds) and er′ (Y ∪{y, z}) ≤ qr′ holds for all r′ ∈ Path(r, c′′) \ (Path(r, c) ∪Path(r, c′)). Similarly, z is accepted 
in ChC (X ′′ ∪ {x′}) iff by adding z, the values of er′ for all r′ ∈ Path(r, c′′) ∩ (Path(r, c) ∪ Path(r, c′)) does not increase (since if 
this happens, then er(Y ∪ {x′, z}) > qr holds) and er′ (Y ∪ {x′, z}) ≤ qr′ holds for all r′ ∈ Path(r, c′′) \ (Path(r, c) ∪ Path(r, c′)). 
However, er′(Y ∪ {y, z}) = er′(Y ∪ {x′, z}) holds for all r′ ∈ Path(r, c′′) \ (Path(r, c) ∪ Path(r, c′)). Thus, the outcomes of z under 

13 Note that Pre and Preceding(X ′ ∪ {x}, x′) used in the proof of Lemma 2 (as well as Suc and Succeeding(X ′ ∪ {x}, x′)) are different, since the orders of 
examining contracts are different between PLDA-RQ and RSDA-RQ.
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X ′′ and X ′′ ∪ {x′} must be identical. Then, ChC (X ′′ ∪ {x′}) = (ChC (X ′′) ∪ {x′}) \ {y} holds. Since we have X ′′ ∪ {x′} = X ′ ∪ {x}
and ChC (X ′′) ∪ {x′} = ChC (X ′) ∪ {x}, ChC (X ′ ∪ {x}) = (ChC (X ′) ∪ {x}) \ {y}, i.e., condition (iii) in Definition 9, holds. �

From Lemmas 1 and 4, we can immediately obtain the following theorem.

Theorem 10. RSDA-RQ is strategyproof.

Also, the following theorem holds.

Theorem 11. RSDA-RQ always produces a feasible and fair matching.

Proof. Assume that X ′ , which is the matching obtained by RSDA-RQ, is not feasible. By the definition of the generalized DA 
mechanism, X ′ is semi-school-feasible. Thus, the only possibility that X ′ is not feasible is that some student s is not assigned 
to any school. Since X ′ is semi-school-feasible, we can choose a contract x = (s, c) such that X ′ ∪ {x} is semi-school-feasible. 
Then, it is clear that x ∈ ChS (X ′ ∪ {x}) and x ∈ ChC (X ′ ∪ {x}) hold. This contradicts the fact that X ′ is HM-stable.

Assume X ′ is not fair. Then, there exist (s, c) ∈ X \ X ′, (s, c′), (s′, c) ∈ X ′ , such that c �s c′ and s �c s′ hold. Thus, in 
the calculation of ChC (X ′ ∪ {(s, c)}), (s, c) is examined before (s′, c). Then, it is clear that (s, c) ∈ ChS(X ′ ∪ {(s, c)}) and 
(s, c) ∈ ChC (X ′ ∪ {(s, c)}) hold. This contradicts the fact that X ′ is HM-stable. �

From the incompatibility of fairness and nonwastefulness, RSDA-RQ is wasteful since it is fair. In Example 4, students 
s1, s2, and s4 claim an empty seat.

Theorem 12. RSDA-RQ is school-equitably-nonwasteful.

Proof. By way of contradiction, assume in matching X ′ , which is obtained by RSDA-RQ, there exist (s, c′) ∈ X \ X ′ , (s, c) ∈ X ′ , 
such that c′ �s c, X ′ \ {(s, c)} ∪ {(s, c′)} is feasible, and |X ′

c | − |X ′
c′ | ≥ 2. Then, it is clear that (s, c′) ∈ ChS (X ′ ∪ {(s, c′)}) holds. 

Also, let us assume (s′, c) is the contract that has the lowest priority in X ′
c according to �c . Then, in the calculation of 

ChC (X ′ ∪ {(s, c′)}), (s, c′) is examined before (s′, c) since |X ′
c| − |X ′

c′ | ≥ 2. Also, since (X ′ \ {(s, c)}) ∪ {(s, c′)} is feasible, (X ′ \
{(s′, c)}) ∪{(s, c′)} is school-feasible. Thus, (s, c′) ∈ ChC (X ′ ∪ {(s, c′)}) holds. This contradicts the fact that X ′ is HM-stable. �

Unfortunately, as discussed in Kamada and Kojima [18], Goto et al. [10], fairness and school-equitably-nonwastefulness 
do not imply HM-stability. Thus, we cannot guarantee that RSDA-RQ obtains the student-optimal fair and school-equitably-
nonwasteful matching. In fact, there is a case where the student-optimal fair and school-equitably-nonwasteful matching 
does not even exist.

6. Evaluation

This section evaluates our newly developed mechanisms. We consider a market with n = 512 students and m = 64
schools. The individual maximum quota for each school qc is 32. Thus, for most cases, the individual maximum quota will 
not be a binding constraint. We consider two tree structures: binary tree and octary tree. In a binary tree, each node has 
two children. Since there are 64 leaf nodes, the height of the tree is six. In an octary tree, each node has eight children. 
Thus, the height of the tree is two, i.e., schools are divided into eight regions, each of which contains eight schools. Let ar

denote pr − ∑
r′∈children(r) pr′ , i.e., ar is the increased amount of r’s minimum quota compared to the sum of the minimum 

quotas of its children. Then, the regional minimum quotas are determined so that for each region r except C , ar becomes 
roughly the same. We set the sum of ar except C , i.e., 

∑
r∈R\{C} ar , to 256. Similarly, let br denote 

∑
r′∈children(r) qr′ − qr , 

i.e., br is the decreased amount of r’s maximum quota compared to the sum of the maximum quotas of its children. Then, 
the regional maximum quotas are determined so that for each region r except C , br becomes roughly the same. We set ∑

r∈R\{C} br = 1024.
We generate students’ preferences as follows. We draw one common vector uc of the cardinal utilities from set [0, 1]m

uniformly at random. We then randomly draw private vector us of the cardinal utilities from the same set, again uniformly 
at random. Next, we construct cardinal utilities over all m schools for student s as αuc + (1 − α)us , for some α ∈ [0, 1]. We 
then convert these cardinal utilities into an ordinal preference relation for each student. The higher the value of α is, the 
more correlated the students’ preferences are. School priorities �c are drawn uniformly at random. We create 100 problem 
instances for each parameter setting.14

14 The averages and variances change only slightly when we increase the number of problem instances to 1000. For example, in Fig. 2, when α = 0.8, for 
100 problem instances, the average and variance of PLDA-RQ are 0.758 and 0.00104, respectively. On the other hand, for 1000 problem instances, they are 
0.760 and 0.00102, respectively.
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Fig. 2. Ratio of claiming students, binary tree, pc = 0. Fig. 3. Ratio of claiming students, octary tree, pc = 0.

Fig. 4. CDFs of student welfare, binary tree, α = 0.3, pc = 0. Fig. 5. CDFs of student welfare, octary tree, α = 0.3, pc = 0.

Fig. 6. CDFs of student welfare, binary tree, α = 0.6, pc = 0. Fig. 7. CDFs of student welfare, octary tree, α = 0.6, pc = 0.

We compare our mechanism to the Artificial Cap Deferred Acceptance mechanism (ACDA). In the ACDA, we artificially 
modify the individual maximum quota of each school so that all regional minimum/maximum quotas can be automatically 
satisfied once these quotas are satisfied. The ACDA produces a feasible and fair matching, but it is less flexible than our 
mechanisms.

First, we show the results when the individual minimum quota for each individual school pc is set to 0. Figs. 2 and 3
show the ratio of students who claim empty seats for binary/octary trees. The x-axis denotes the value of α, and the y-axis 
denotes the average ratio of the students who claim empty seats. The result reveals that the ACDA is quite wasteful; most 
students claim empty seats. The ratio is higher in the binary tree, in which regional quotas are more severe. In terms of 
efficiency, PLDA-RQ outperforms RSDA-RQ.

Figs. 4 and 5 illustrate the student welfare by plotting the cumulative distribution functions (CDFs) of the average number 
of students matched with their k-th or higher ranked school under each mechanism for α = 0.3, and Figs. 6 and 7 show the 
results where α = 0.6. If the CDF of one mechanism first-order stochastically dominates another, then a strong argument can 
be made for using the stochastically dominant mechanism. PLDA-RQ and RSDA-RQ outperform the ACDA. Setting artificial 
caps decreases the welfare of the students, since the ACDA loses too much flexibility. As α increases, the competition among 
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Fig. 8. Ratio of claiming students, binary tree, pc = 2. Fig. 9. Ratio of claiming students, octary tree, pc = 2.

Fig. 10. CDFs of student welfare, binary tree, α = 0.3, pc = 2. Fig. 11. CDFs of student welfare, octary tree, α = 0.3, pc = 2.

Fig. 12. CDFs of student welfare, binary tree, α = 0.6, pc = 2. Fig. 13. CDFs of student welfare, octary tree, α = 0.6, pc = 2.

students becomes more severe and their welfare decreases. Our experimental results clearly show that our newly developed 
mechanisms have an advantage over the ACDA in terms of nonwastefulness and student welfare.

In terms of efficiency, PLDA-RQ is better than RSDA-RQ. Thus, if the welfare of students is important, then PLDA-RQ 
would be a better choice. RSDA-RQ tries to balance the number of students allocated to each school by sacrificing the 
efficiency compared to PLDA-RQ. Thus, if such a balance is important, then RSDA-RQ would be a better choice.

Next, we show the results when the individual minimum quota for each individual school pc is set to 2 in Figs. 8–13. We 
can see the qualitative trends of these results are very similar to the cases when pc = 0. However, the difference between 
binary tree cases and octary tree cases becomes smaller. In octary tree cases where pc = 0, we can assign students to 
schools within a region very flexibly. By setting pc = 2, we lose such flexibility. As a result, the difference between the two 
different tree structures becomes smaller.

Finally, we show the results when schools have different capacities in Figs. 14–19. We assume there are three types of 
schools: (i) small-scale schools where qc = 8, pc = 0, (ii) medium-scale schools where qc = 16, pc = 1, and (iii) large-scale 
schools where qc = 32, pc = 2. We set c1 to a small-scale school, c2 to a medium-scale school, c3 to a large-scale school, 
c4 is a small-scale school, and so on. For each region r except C , pr is set to 1.2 × ∑

r′∈children(r) pr′ , and qr is set to 
0.9 × ∑

r′∈children(r) qr′ . The preferences of students and priorities of schools are generated in the same way as previous 
experiments. Again, we can see the qualitative trends of these results are very similar to previous experiments. In this 
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Fig. 14. Ratio of claiming students, binary tree, three school types. Fig. 15. Ratio of claiming students, octary tree, three school types.

Fig. 16. CDFs of student welfare, binary tree, α = 0.3, three school 
types.

Fig. 17. CDFs of student welfare, octary tree, α = 0.3, three school 
types.

Fig. 18. CDFs of student welfare, binary tree, α = 0.6, three school 
types.

Fig. 19. CDFs of student welfare, octary tree, α = 0.6, three school 
types.

setting, the difference between binary tree cases and octary tree cases is small, since we impose individual minimum 
quotas for large and medium scale schools.

7. Conclusion

In this paper, we analyzed the complexity of finding a feasible matching for a given matching problem with regional quo-
tas. We showed that, when we put no restrictions on the structure of regions, checking the existence of a feasible matching 
that satisfies all quotas is NP-complete. Then, assuming that regions have a hierarchical structure, we developed strate-
gyproof matching mechanisms for handling regional minimum/maximum quotas called PLDA-RQ and RSDA-RQ. We proved 
that these mechanisms are fair but wasteful, while they satisfy conditions that are weaker than nonwastefulness (i.e., PL-
wastefulness and school-equitable-nonwastefulness). In particular, PLDA-RQ satisfies a stronger fairness requirement called 
PL-fairness, and it obtains the student-optimal PL-fair and PL-nonwasteful matching. We then confirmed the advantages of 
these mechanisms compared to the artificial cap mechanism via simulations.
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