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Designing Matching Mechanisms under
General Distributional Constraints

Masahiro Goto Fuhito Kojima Ryoji Kurata
Akihisa Tamura Makoto Yokoo∗

Abstract

In this paper, we consider two-sided, many-to-one matching prob-
lems where agents in one side of the market (schools) impose some
distributional constraints (e.g., a maximum quota for a set of schools),
and develop a strategyproof mechanism that can handle a very gen-
eral class of distributional constraints. We assume distributional con-
straints are imposed on a vector, where each element is the number
of contracts accepted for each school. The only requirement we im-
pose on distributional constraints is that the family of vectors that
satisfy distributional constraints must be hereditary, which means if a
vector satisfies the constraints, any vector that is smaller than it also
satisfies them. When distributional constraints are imposed, a stable
matching may not exist. We develop a strategyproof mechanism called
Adaptive Deferred Acceptance mechanism (ADA), which is nonwaste-
ful and “more fair” than a simple nonwasteful mechanism called the
Serial Dictatorship mechanism (SD) and “less wasteful” than another
simple fair mechanism called the Artificial Cap Deferred Acceptance
mechanism (ACDA). We show that we can apply this mechanism even
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if the distributional constraints do not satisfy the hereditary condition
by applying a simple trick, assuming we can find a vector that sat-
isfy the distributional constraints efficiently. Furthermore, we demon-
strate the applicability of our model in actual application domains.
JEL Classification: C78, D61, D63
Keywords: two-sided matching, many-to-one matching, market de-
sign, matching with contracts, matching with constraints, strategyproof-
ness, deferred acceptance.

1 Introduction

The theory of two-sided matching has been extensively developed, and it
has been applied to design clearinghouse mechanisms in various markets in
practice.1 As the theory has been applied to increasingly diverse types of en-
vironments, however, researchers and practitioners have encountered various
forms of distributional constraints. As these features have been precluded
from consideration until recently, they pose new challenges for market de-
signers.

The regional maximum quotas provide one such example. Under the re-
gional maximum quotas, each agent on one side of the market (which we
call a school) belongs to a region, and each region has an upper bound on
the number of agents on the other side (who we call students) who can be
matched in each region. Regional maximum quotas exist in many markets
in practice. A case in point is Japan Residency Matching Program (JRMP),
which organizes matching between medical residents and hospitals in Japan.
Although JRMP initially employed the standard Deferred Acceptance mech-
anism (DA) Gale and Shapley (1962), it was criticized as placing too many
doctors in urban areas and causing doctor shortage in rural areas. To ad-
dress this criticism, Japanese government now imposes a regional maximum
quota to each region of the country. Regulations that are mathematically iso-
morphic to regional maximum quotas are utilized in various contexts, such
as Chinese graduate admission, Ukrainian college admission, Scottish proba-
tionary teacher matching, among others Kamada and Kojima (2015).

Furthermore, there are many matching problems in which minimum quo-
tas are imposed. School districts may need at least a certain number of stu-

1See Roth and Sotomayor (1990) for a comprehensive survey of many results in this
literature.
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dents in each school in order for the school to operate, as in college admissions
in Hungary Biro, Fleiner, Irving, and Manlove (2010). The cadet-branch
matching program organized by United States Military Academy (USMA)
imposes minimum quotas on the number of cadets who can be assigned to
each branch Sönmez and Switzer (2013). Yet another type of constraints
takes the form of diversity constraints. Public schools are often required to
satisfy balance on the composition of students, typically in terms of socioe-
conomic status Ehlers, Hafalir, Yenmez, and Yildirim (2014). Several mech-
anisms have been proposed Ehlers, Hafalir, Yenmez, and Yildirim (2014);
Fragiadakis, Iwasaki, Troyan, Ueda, and Yokoo (2015); Goto, Hashimoto,
Iwasaki, Kawasaki, Ueda, Yasuda, and Yokoo (2014); Goto, Iwasaki, Kawasaki,
Yasuda, and Yokoo (2014); Kamada and Kojima (2015) for each of these var-
ious constraints, but previous studies have focused on tailoring mechanisms
to specific settings, rather than providing a general framework.

One notable exception is Kojima, Tamura, and Yokoo (2014), in which
a general framework for handling various distributional constraints is de-
veloped, in the setting of ‘matching-with-contracts’ Hatfield and Milgrom
(2005). Kojima, Tamura, and Yokoo (2014) assume school priorities and dis-
tributional constraints are aggregated into a preference of a representative
agent, “the schools,” as in Kamada and Kojima (2015).2 They show that if
the schools’ aggregated preference can be represented by an M♮-concave func-
tion Murota (2003), then the generalized Deferred Acceptance mechanism
(generalized DA) is strategyproof and obtains the student-optimal Hatfield-
Milgrom (HM)-stable matching. Developing such a general framework and
a general mechanism is important since they can contribute to the advance
of practical market design (or “economic engineering”) as emphasized in the
recent literature (see Roth (2002) and Milgrom (2009) for instance), by pro-
viding tools for organizing matching clearinghouses in practice.

Kojima, Tamura, and Yokoo (2014) show that in order to represent
schools’ preferences as an M♮-concave function, the family of contracts that
satisfy hard distributional constraints must form a mathematical structure
called a matroid Murota (2003). Usually, distributional constraints are im-
posed on a vector, where each element is the number of contracts accepted
for each school, rather than on concrete contracts. The fact that the family
of contracts forms a matroid corresponds to the fact that (i) the family of
vectors forms an M♮-convex set, and (ii) it is hereditary, which means if a

2Kojima, Tamura, and Yokoo (2014) use a term “hospital” instead of “school”.
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vector satisfies constraints, any vector that is smaller than it also satisfies
constraints.

In this paper, we develop a mechanism that can handle more general
distributional constraints than Kojima, Tamura, and Yokoo (2014). The
only requirement we impose on distributional constraints is that the family
of vectors that satisfy distributional constraints must be hereditary.

In a standard definition, a matching is stable if it is fair and nonwasteful.3

When distributional constraints are imposed, a stable matching may not
exist. If we completely ignore fairness or nonwastefulness, we can employ
trivial strategyproof mechanisms in our setting.

More specifically, we can use the Serial Dictatorship mechanism (SD) to
achieve nonwastefulness. In the SD, we assume a common priority ordering
among students called a master list is given. Students are assigned sequen-
tially according to the master list. A student s is allowed to be assigned to
a school c if doing so would not cause any constraint violation. Then, s can
choose her most preferred school within allowed schools.

Also, we can use the Artificial Cap Deferred Acceptance (ACDA) mech-
anism to achieve fairness, i.e., we artificially lower the maximum quota of
each school such that the DA obtains a set of contracts that satisfies all
distributional constraints.

However, the limitations of these mechanisms are that the SD can be
extremely unfair and the ACDA can be extremely wasteful (thus it sacrifices
students’ welfare too much). As a result, it would be difficult to apply these
mechanisms in real application domains. In this paper, we develop a strat-
egyproof and nonwasteful mechanism called Adaptive Deferred Acceptance
(ADA) mechanism, which is “more fair” than the SD, and “less wasteful”
than the ACDA. This mechanism can be useful even in the case where the
family of vectors forms an M♮-convex set and we can apply the generalized
DA, assuming the welfare of students is the primary concern, while the fair-
ness among students is the secondary concern.

The rest of this paper is organized as follows. In Section 2, we show a
standard model without any distributional constraints and a model with gen-
eral distributional constraints. Next, in Section 3, we introduce two baseline
mechanisms, i.e., the SD and the ACDA. Then, in Section 4, we introduce
the ADA and show its properties. Next, in Section 5, we discuss how to han-

3Note that HM-stability used in Kojima, Tamura, and Yokoo (2014) is different from
the standard stability when distributional constraints are imposed.
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dle non-hereditary constraints. In Section 6, we investigate how to represent
actual application domains in our model. Finally, Section 7 concludes this
paper.

2 Model

In this section, we first show a standard model without any distributional
constraints. Then, we show our model with a very general class of distribu-
tional constraints.

2.1 Standard model

A standard matching market is given by (S,C,X,≻S,≻C , qC). The meaning
of each element is as follows.

• S = {s1, . . . , sn} is a set of students.

• C = {c1, . . . , cm} is a set of schools.

• X ⊆ S × C is a finite set of contracts. x = (s, c) ∈ X means student s
is matched to school c.

• For X ′ ⊆ X, let X ′
s denote {(s, c) ∈ X ′ | c ∈ C}, and X ′

c denote
{(s, c) ∈ X ′ | s ∈ S}.

• ≻S= (≻s1 , . . . ,≻sn) is a profile of students’ preferences. Each ≻s rep-
resents the strict preference of each student s over acceptable contracts
within Xs = {(s, c) ∈ X | c ∈ C}.

• ≻C= (≻c1 , . . . ,≻cm) is a profile of schools’ priorities. Each ≻c repre-
sents the strict priority of each school c over contracts within Xc =
{(s, c) ∈ X | s ∈ S}.

• qC = (qc1 , . . . , qcm) is a vector of school’s maximum quotas.

We assume each contract x in Xc is acceptable for c. If some contract is
unacceptable for a school, we assume it is not included in X.

First, let us introduce several concepts related to feasibility.
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Definition 1 (feasibility). We say X ′ is school-feasible if for all c ∈ C,
|X ′

c| ≤ qc holds. We say X ′ is student-feasible if for all s ∈ S, either (i)
X ′

s = {x} and x is acceptable for s, or (ii) X ′
s = ∅ holds. We say X ′ is

feasible if it is student- and school-feasible. We call a feasible set of contracts
matching.

Next, let us introduce choice functions for students and schools.

Definition 2 (choice functions). For each student s, its choice function
Chs(X

′) specifies her most preferred contract withinX ′ ⊆ X, i.e., Chs(X
′) =

{x}, where x is the most preferred acceptable contract in X ′
s if one exists,

and Chs(X
′) = ∅ if no such contract exists. Then, the choice function of all

students is defined as ChS(X
′) :=

∪
s∈S Chs(X

′).
For each school c, its choice function Chc(X

′) chooses top qc contracts
within X ′

c according to ≻c. If |X ′
c| ≤ qc, Chc(X

′) = X ′
c . Then, the choice

function of all schools is defined as ChC(X
′) :=

∪
c∈C Chc(X

′).

By these choice functions, the Deferred Acceptance mechanism (DA) for
the ‘matching with contracts’ model can be defined as follows.4

Mechanism 1 (Deferred Acceptance mechanism (DA)).

1. R← ∅.

2. X ′ ← ChS(X \R), X ′′ ← ChC(X
′).

3. If X ′ = X ′′ then return X ′, otherwise, R← R ∪ (X ′ \X ′′), go to (2).

2.2 Model with distributional constraints

A matching market under distributional constraints is given by:
(S,C,X,≻S,≻C , qC , η). The only additional element to the standard model
is a function η : Zm → {−∞, 0}, where m is the number of schools. We
assume η represents distributional constraints.

Definition 3 (feasibility with distributional constraints). We say ζ, which
is a vector of m natural numbers, is admissible in η if η(ζ) = 0. For X ′ ⊆ X,
let us define ζ(X ′) as (|X ′

c1
|, |X ′

c2
|, . . . , |X ′

cm |). We say X ′ is school-feasible if
ζ(X ′) is admissible in η.

4In Hatfield and Milgrom (2005), this mechanism is called generalized Gale-Shapley
algorithm.
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We assume η respects maximum quotas and the total number of students,
i.e., if ζi > qci for some i ∈ M , then η(ζ) = −∞, and if

∑
i∈M ζi > n, then

η(ζ) = −∞. In a standard two-sided matching market, X ′ is school-feasible
if for all c ∈ C, |X ′

c| ≤ qc holds. By introducing distributional constraints,
in order for X ′ to be school-feasible, ζ(X ′) must be admissible in η.

For two m-element vectors ζ, ζ ′ ∈ Zm, we say ζ ≤ ζ ′ if for all i ∈ M ,
ζi ≤ ζ ′i holds. Also, we say ζ < ζ ′ if ζ ≤ ζ ′ and for some i ∈M , ζi < ζ ′i holds.

Definition 4 (heredity). We say η is hereditary if for all ζ, ζ ′ ∈ Zm, where
ζ > ζ ′, if ζ is admissible in η, then ζ ′ is also admissible in η.

Assume η is hereditary. Then, if X ′ is feasible, X ′′ ⊂ X ′ is also feasible.
Let χi denote an m-element unit vector, where i-th element is 1 and other

elements are 0. Let χ0 denote an m-element zero vector (0, . . . , 0) and M
denote {1, . . . ,m}.

Definition 5 (M♮-convex set). We say a family ofm-element vectors F ⊆ Zm

forms an M♮-convex set, if for all ζ, ζ ′ ∈ F , for all i such that ζi > ζ ′i,
there exists j ∈ {0} ∪ {k ∈ M | ζk < ζ ′k} such that ζ − χi + χj ∈ F and
ζ ′ + χi − χj ∈ F hold.

Kojima, Tamura, and Yokoo (2014) shows that to apply their framework,
it is required that the family of admissible vectors is an M♮-convex set, as
well as hereditary.

In the rest of this paper, we assume η is hereditary. This is the only re-
quirement we impose on η, i.e., we do not require it forms an M♮-convex set.
Thus, our model of distributional constraints is quite general, and strictly
more general than the model in Kojima, Tamura, and Yokoo (2014). Ka-
mada and Kojima (2014) also examine this general case, and characterize the
condition where a stable matching exists. Some distributional constraints do
not satisfy heredity. For example, if a minimal quota is imposed, i.e., a
certain number of students must be assigned to a school, or each student
must be assigned to some school, it is clear that heredity is not satisfied. We
describe a method to handle such distributional constraints in our model in
Section 5.

Let us introduce a simple example.

Example 2.1. Let us consider the following situation.

• There are six students s1, s2, . . . , s6.
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• There are four schools c1, c2, c3, and c4.

• The preferences of all students are the same: c1 ≻s c2 ≻s c3 ≻s c4.

• The priorities of all schools are the same: s6 ≻c s5 ≻c . . . ≻c s1.

• The maximum quota of each school is 2.

• We require the total number of students accepted for each of the fol-
lowing groups must be at most 3: {c1, c2}, {c3, c4}, {c1, c3}, {c2, c4}.

Then, η(ζ) = 0 if ζ ≤ (2, 1, 1, 2) or ζ ≤ (1, 2, 2, 1). This η is hereditary,
but the family of admissible vectors does not form an M♮-convex set. For
example, if we choose ζ = (2, 1, 1, 2) and ζ ′ = (1, 2, 2, 1), for χ1, there exits
no j ∈ {0} ∪ {k ∈M | ζk < ζ ′k} such that η(ζ − χ1 + χj) = 0 holds.

With a slight abuse of notation, for two sets of contracts X ′ and X ′′, we
denote X ′

s ≻s X
′′
s if either (i) X ′

s = {x′}, X ′′
s = {x′′}, and x′ ≻s x

′′ for some
x′, x′′ ∈ Xs that are acceptable for s, or (ii) X

′
s = {x′} for some x′ ∈ Xs that

is acceptable for s and X ′′
s = ∅. Furthermore, we denote X ′

s ⪰s X
′′
s if either

X ′
s ≻s X

′′
s or X ′

s = X ′′
s . Also, we use notations like x ≻s X

′
s or X ′

s ≻s x,
where x is a contract and X ′ is a matching. Furthermore, for X ′

s ⊆ Xs, we
say X ′

s is acceptable for s if either (i) X ′
s = {x} and x is acceptable for s,

or (ii) X ′
s = ∅ holds. Also, when describing ≻s or ≻c, we sometimes write

c1 ≻s c2 instead of (s, c1) ≻s (s, c2), and s1 ≻c s2 instead of (s1, c) ≻c (s2, c).
Let us introduce several desirable properties of a matching and a mecha-

nism.

Definition 6 (nonwastefulness). In a matching X ′, a student s claims an
empty seat of school c, if (s, c) ∈ X\X ′, (s, c) is acceptable for s, (s, c) ≻s X

′
s,

and (X ′ \X ′
s) ∪ {(s, c)} is feasible.

We say a matching X ′ is nonwasteful if no student claims an empty seat.
We say a mechanism is nonwasteful if it produces a nonwasteful matching
for every possible profile of the preferences and priorities.

Definition 7 (fairness). In a matching X ′, a student s has justified envy
towards another student s′ if (s, c) ∈ X\X ′, (s, c) is acceptable for s, (s, c) ≻s

X ′
s, (s

′, c) ∈ X ′, and (s, c) ≻c (s
′, c) hold.

We say a matching X ′ is fair if no student has justified envy. We say a
mechanism is fair if it produces a fair matching for every possible profile of
the preferences and priorities.

8



Definition 8 (stability). We say a matching X ′ is stable if no student has
justified envy and no student claims an empty seat.

When additional distributional constraints are imposed, it is common
that fairness and nonwastefulness are incompatible. This is true even for
simple constraints such as for a subset of schools C ′ ⊂ C, the total number
of students accepted in these schools is bounded (i.e., regional maximum
quota) Kamada and Kojima (2014).

For mechanism φ and students’ preference profile ≻S, let φ(≻S) denote
the obtained matching of φ. Also, φs(≻S) denote {(s, c) | (s, c) ∈ φ(≻S), c ∈
C} and φc(≻S) denote {(s, c) | (s, c) ∈ φ(≻S), s ∈ S}. Furthermore, let
(≻c,≻−c) denote the preference profile in which the preference of student s
is ≻s and the profile of other agents’ preferences is ≻−s.

Definition 9 (strategyproofness). We say a mechanism φ is strategyproof
if no student ever has any incentive to misreport her preference, no matter
what the other students report, i.e., for all ≻s, ≻̃s, and ≻−s, φ((≻s,≻−s)) ⪰s

φ((≻̃s,≻−s)) holds.

When no additional distributional constraints are imposed, the DA (Mech-
anism 1) is strategyproof, fair, and nonwasteful.

Let us introduce several concepts related to the efficiency of a matching
and a mechanism.

Definition 10. We say matching X ′ strongly dominates another matching
X ′′ if X ′

s ≻s X
′′
s holds for every s ∈ S. Also, we say matching X ′ weakly

dominates another matching X ′′ if X ′
s ⪰s X

′′
s holds for every s ∈ S, and

there exists s ∈ S such that X ′
s ≻s X ′′

s holds. We say matching X ′ is
weakly Pareto efficient for students, if there exist no other matching X ′′ that
strongly dominates X ′. Also, we say matching X ′ is strongly Pareto effi-
cient for students, if there exists no matching X ′′ that weakly dominates
X ′. Furthermore, we say mechanism ψ dominates another mechanism φ if
φ ̸= ψ and for each preference profile of students ≻S, φ(≻S) weakly domi-
nates ψ(≻S) or φ(≻S) = ψ(≻S) holds, and there exists ≻S such that φ(≻S)
weakly dominates ψ(≻S).

3 Baseline mechanisms

First, we introduce a baseline mechanism that is strategyproof and non-
wasteful called the Serial Dictatorship mechanism (SD)．Here, we assume
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a common priority ordering among students called a Master List (ML) is
given. Without loss of generality, we assume ML is defined as follows:
(s1, s2, . . . , sn).

The SD is defined as follows.

Mechanism 2 (Serial Dictatorship mechanism (SD)).

1. Set X ′ to ∅, k to 1.

2. If k > n, return X ′, otherwise, choose student sk. Then, choose the
most preferred acceptable school c for sk such that (sk, c) ∈ X and
ζ(X ′ + (sk, c)) is admissible in η. Set X ′ to X ′ + (sk, c) (if no such
school satisfies these conditions, X ′ remains the same). Set k to k+ 1.
Go to (2).

In Example 2.1, the obtained matching by the SD is:

{(s1, c1), (s2, c1), (s3, c2), (s4, c3), (s5, c4), (s6, c4)}.

Theorem 1. The SD is strategyproof and nonwasteful, and obtains a feasible
set of contracts.

Proof. It is clear that the SD is strategyproof, since each student s does not
have any influence on the choices of students that are higher in ML, and
she can choose the best outcome in the remaining possibilities. Also, if there
exists (s, c) ∈ X \X ′ such that (s, c) ≻s X

′
s, it means that ζ((X ′\X ′

s)+(s, c))
is not admissible in η. Thus, (X ′ \X ′

s) + (s, c) is not feasible and s cannot
claim an empty seat of c. Furthermore, in Mechanism 2, X ′ is always feasible.
Thus, the SD obtains a feasible set of contracts.

Actually, the matching obtained by the SD is strongly Pareto efficient for
students (Definition 10), which implies nonwastefulness.

Next, we introduce another baseline mechanism, which is strategyproof
and fair, called the Artificial Cap DA mechanism (ACDA), defined as follows.

Mechanism 3 (Artificial Cap Deferred Acceptance mechanism (ACDA)).

1. Choose an arbitrary ζ such that ζ is admissible and maximal (i.e., there
exists no ζ ′ > ζ such that ζ ′ is admissible in η).

2. Set q̂ci to ζi for each ci ∈ C.

10



3. Obtain a matching X ′ for a standard matching market:
(S,C,X,≻S,≻C , q̂C) by the DA.

In Example 2.1, assume the ACDA chooses ζ = (1, 2, 2, 1). Then, the ob-
tained matching by the ACDA is: {(s1, c4), (s2, c3), (s3, c3), (s4, c2), (s5, c2), (s6, c1)}.

Theorem 2. The ACDA is strategyproof and fair, and obtains a feasible set
of contracts.

Proof. Since the DA is strategyproof and fair, and ζ and the maximum quotas
q̂ci are given exogenously, it is clear that the ACDA is also strategyproof and
fair. Also, the DA obtains a matching that satisfies all maximum quotas.
Thus, for an obtained matching X ′, |X ′

ci
| ≤ q̂ci = ζi holds for all ci ∈ C.

Thus, ζ(X ′) ≤ ζ holds. Since ζ is admissible in η, ζ(X ′) is also admissible in
η since we assume η is hereditary. Thus, X ′ is feasible.

The problems of these mechanisms are that the SD can be extremely
unfair and the ACDA can be extremely wasteful. Since the SD completely
ignores the priorities of schools, if the ML and schools’ priorities disagree,
many students can have justified envy. In Example 2.1, the obtained match-
ing by the SD is: {(s1, c1), (s2, c1), (s3, c2), (s4, c3), (s5, c4), (s6, c4)}. Then,
students except s1 and s2 have justified envy towards s1 and s2.

Let us consider another example.

Example 3.1. The settings are identical to Example 2.1, except that stu-
dents’ preferences are given as follows:
s1, s2 : c1 ≻s c2 ≻s c3 ≻s c4
s3 : c2 ≻s c3 ≻s c4 ≻s c1
s4 : c3 ≻s c2 ≻s c1 ≻s c4
s5, s6 : c4 ≻s c3 ≻s c2 ≻s c1

If the ACDA chooses ζ = (1, 2, 2, 1), then the obtained matching X ′ is:
{(s1, c2), (s2, c1), (s3, c2), (s4, c3), (s5, c3), (s6, c4)}. However, there exists an-
other fair and feasible set of contractsX ′′: {(s1, c1), (s2, c1), (s3, c2), (s4, c3), (s5, c4), (s6, c4)}.
Also, every student weakly prefersX ′′ overX ′, and students s1 and s5 strictly
prefer X ′′. In this case, the choice of ζ is “wrong” considering students’ pref-
erences, but ζ must be chosen exogenously without considering students’
preferences.
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There exists a case where the obtained matching by the ACDA is not
weakly Pareto efficient (Definition 10). Consider a following simple case.
There are two schools c1 and c2 and one student s1. η(ζ) = 0 if ζ ≤ (1, 0)
or ζ ≤ (0, 1). Assume the ACDA chooses ζ = (0, 1), while s1 prefers c1 over
c2. The obtained matching {(s1, c2)} is not weakly Pareto efficient, since s1
prefers another matching {(s1, c1)}.

4 Adaptive Deferred Acceptance Mechanism

(ADA)

In this section, we develop a strategyproof and nonwasteful mechanism called
Adaptive Deferred Acceptance Mechanism (ADA), which is “more fair” than
the SD. Then, we show various properties of the ADA.

4.1 Mechanism description

We first introduce a concept called forbidden school used in the ADA.

Definition 11 (forbidden school). For η and qC , we say school ci is forbidden
if 0 < qci and χi is not admissible in η.

We assume initially no school is forbidden.

Mechanism 4 (Adaptive Deferred Acceptance mechanism (ADA)).
Let L := (s1, . . . , sn), q

1
C := qC , η

1 := η. Proceed to Stage 1.

Stage k: Proceed to Round 1.

Round t: Select top t students from L. Let X ′ be the matching that is
obtained by the DA for the selected students under qkC . Let qk+1

c :=
qkc − |X ′

c| for each c ∈ C, and ηk+1(ζ) := ηk(ζ + ζ(X ′)).

(i) If all students in L are already selected, then finalize X ′ and ter-
minate the mechanism.

(ii) If there exists no school ci such that ci is forbidden for ηk+1 and
qk+1
C , then proceed to Round t+ 1.

(iii) Otherwise, finalize X ′. Remove top t students from L. For each
school c that is forbidden for ηk+1 and qk+1

C , set qk+1
c to 0. Proceed

to Stage k + 1.
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Let us describe the execution of the ADA in the setting of Example 2.1.

Round 1 of Stage 1: The obtained matching is: {(s1, c1)}. Since no school
is forbidden, the mechanism proceeds to the next round.

Round 2 of Stage 1: The obtained matching is: {(s1, c1), (s2, c1)}. Since
no school is forbidden, the mechanism proceeds to the next round.

Round 3 of Stage 1: The obtained matching is: {(s1, c2), (s2, c1), (s3, c1)}.
Now, c2 is forbidden. Thus, the current matching is finalized. The
maximum quotas for c1 and c2 become 0.

Round 1 of Stage 2: The obtained matching is: {(s4, c3)}. Now, c3 is
forbidden. Thus, the current matching is finalized. The maximum
quotas for c3 becomes 0 and the maximum quota of c4 is 2.

Round 1 of Stage 3: The obtained matching is: {(s5, c4)}. Since no school
is forbidden, the mechanism proceeds to the next round.

Round 2 of Stage 3: The obtained matching is: {(s5, c4), (s6, c4)}. Now, all
students are selected. Thus, the current matching is finalized. The final
result of the ADA is: {(s1, c2), (s2, c1), (s3, c1), (s4, c3), (s5, c4), (s6, c4)}.

4.2 Properties of ADA

4.2.1 Basic properties

We first examine basic properties of the ADA, e.g., strategyproofness, non-
wastefulness, and time-complexity.

Theorem 3. The ADA is nonwasteful and obtains a feasible set of contracts.

Proof. About nonwastefulness, assume student s, who is assigned at Stage k
prefers (s, c) ∈ X \X ′ over X ′

s. The fact s was not accepted by c means that
(i) c becomes full at or before Stage k, or (ii) c becomes forbidden before
Stage k. In either case, ζ((X ′ \X ′

s) ∪ {(s, c)}) is not admissible in η. Thus,
s cannot claim an empty seat of c.

About feasibility, in each round, by adding one more student, the number
of students of each school c is either (i) unchanged from the previous round,
or (ii) incremented by one. Since each school is full or can accept at least
one more student, the obtained contracts is feasible. Thus, the accumulation
of these contracts is also feasible.

13



Next, we show that the ADA is strategyproof. Showing the strategyproof-
ness of the ADA is non-trivial, since a student might have an incentive to
force the current stage to finish earlier, so that she can avoid competing with
more rivals. The following theorem shows that such a manipulation is not
profitable.

Theorem 4. The ADA is strategyproof.

Proof. Assume student s is assigned to a better school by misreporting.
Without loss of generality, we can assume c1 ≻s c2 ≻s . . . ≻s cm. We assume
s is assigned to ci (here, we assume ci can be the outside option, i.e., being
unassigned). in Stage k (which is finished at Round t) when s reports her
true preference. Also, we assume s is assigned to cj (j < i) in Stage k (which
is finished at Round t′) when she misreports her preference. It is clear that
if t′ > t, s cannot be assigned to a more preferred school, since t′ > t means
she needs to compete with more students by misreporting. Thus, we assume
t ≥ t′ holds.

Let us assume a matching in Stage k is obtained in the following way.
First, all selected students at Round t′ except s are tentatively matched
to schools by the DA. Then, continue the procedure of the DA by adding
s to the current tentative matching. The final matching obtained in this
way is identical to the final matching obtained by applying the DA when all
students enter the market simultaneously McVitie and Wilson (1971). Note
that when one student s is added, either one of the following two cases are
possible: (i) s is accepted and there exists exactly one school c where the
number of accepted students increases by one, and the number of accepted
students of all other schools are the same, or (ii) student s′ (s′ can be s or
another student) is rejected from all schools, and the number of accepted
students of all schools are the same.

In the above procedure, when s enters the market, s first applies to some
school c. Then, either c accepts all students applying to c and the current
round terminates, or c rejects one student s′ (s′ can be s or another student)
and s′ applies to another school.

We call such a sequence of applications and rejections a rejection chain.
More formally, let Cs denote a list of schools to which student s is going to
apply. We call Cs a scenario. Assume s enters the market with scenario Cs.
R(Cs) is the rejection chain of Cs, which describes the sequence of applications
and rejections, until s is rejected by the last school in Cs, or the current stage
terminates. When the mechanism proceeds to the next round, we assume a
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new student enters the market while existing students are tentatively assigned
according to the matching obtained in the previous round. Figure 1 shows
an example of a rejection chain. For rejection chains, the property described
in Lemma 4.1 holds.

Round Step Action
t′ 1 student s applies to school c′

2 school c′ rejects student s′

3 student s′ applies to school c′′

...
...

t′ + 1 1 (new) student s′′ applies to school c′′′

2 school c′′′ rejects student s′′′

...
...

Figure 1: Example of rejection chain

Let Cs be (c1, . . . , ci−1), i.e., s’s true preference truncated just before ci.
Then, the last action in R(Cs) must be “school ci−1 rejects student s.” On
the other hand, let C ′s be a sequence of schools to which s applies when s
misreports and the last school in C ′s is cj. Since s is accepted to cj, the last
action in R(C ′s) must be “student s′ applies to school c′” (and is accepted)
for some s′ ∈ S and c′ ∈ C. From the fact that the current stage k (as well as
the current round) terminates, c′ becomes forbidden according to qk+1

C and
ηk+1.

For C ′s, either one of the following two cases is possible: (i) cj is the least
preferred school for s within C ′s (according to the true preference of s), or (ii)
C ′s contains a school that is less preferred for s.

In case (i), each school c that appears in C ′s also appears in Cs, student
s applies to every school in Cs, and all actions in R(C ′s) occur in the same
round. Thus, from Lemma 4.1, the last action in R(C ′s), i.e., “student s′
applies to school c′,” must also be included in R(Cs). However, in R(Cs),
when student s′ applies to c′, if c′ accepts all students currently applying to
c′, then the current round and stage terminate. This contradicts the fact
that the last action in R(Cs) is “school ci−1 rejects student s.” Also, if c′

rejects s′, it must be due to the fact that a new student is introduced in a
new round, and c′ has already accepted some student s′′. However, when c′

accepts s′′, all students currently applying to c′ are accepted and the current
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round and stage must have terminated. This contradicts the fact that the
last action in R(Cs) is “school ci−1 rejects student s.”

In case (ii), let C ′′s be the sequence that is obtained by removing all schools
that are worse than cj (according to the true preference of s) from C ′s. The
last school in C ′′s is cj. It is clear that all actions in R(C ′′s ) occur in the same
round. This is because if the DA terminates before s applies to all schools
in C ′′s , then it implies that the DA is not strategyproof (if the true preference
of s is the one which corresponds to C ′s, then s is assigned to a better school
by declaring her preference as C ′′s ). Thus, we can apply Lemma 4.1 for C ′′s
and Cs. Then, the last action in R(C ′′s ) must be “school cj rejects student s.”
This is because if we assume the last action in R(C ′′s ) is “student s′ applies to
school c′,” we encounter a contradiction using a similar argument as case (i).
Each school c that appears in C ′′s also appears in C ′s, and student s applies
to every school in C ′s. Thus, from Lemma 4.1, the last action in R(C ′′s ), i.e.,
“school cj rejects student s,” must also be included in R(C ′s). However, this
contradicts the fact that s is accepted to cj.

The Scenario Lemma (Lemma 4.1) is inspired by the Scenario Lemma
introduced in Dubins and Freedman (1981), which proves strategyproofness
of the DA in a one-to-one matching. Fragiadakis and Troyan (2013) also use
a similar lemma to prove strategyproofness of their mechanism for handling
individual minimum quotas.

Lemma 4.1 (Scenario Lemma). Consider two scenarios Cs and C ′s and their
rejection chains R(Cs) and R(C ′s). If each school c that appears in C ′s also
appears in Cs (the order of c is irrelevant), student s applies to every school
c ∈ Cs in R(Cs), and all actions in R(C ′s) occur in the same round, then every
action in R(C ′s) also appears in R(Cs).

Proof. The first action in R(C ′s) is “student s applies to school c,” where c is
the first school in C ′s. From the assumption that every school that appears in
C ′s also appears in Cs, and s applies to all schools in Cs, R(Cs) also includes
this action. For an inductive step, let us assume from the first to i − 1-th
actions in R(C ′s) are included in R(Cs). We are going to show that i-th action
in R(C ′s) is also included in R(Cs). The i-th action in R(C ′s) is either: (i)
“student s′ applies to school c′,” or (ii) “school c′ rejects student s′.” In case
(i), there must be a previous action “school c′′ rejects student s′” in R(C ′s).
From the inductive assumption, this previous action must be included in
R(Cs). Thus, the current action must also be included in R(Cs). In case (ii),
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let S ′
c′ denote a set of students who have applied to c′ in the current stage by

the i-th action in R(C ′s), and let Sc′ denote a set of students who applied to
c′ in the current stage by the last action in R(Cs). It is clear that S ′

c′ ⊆ Sc′

holds. Also, in S ′
c′ and Sc′ , any student whose rank is worse than qkc′ among

those in S ′
c′ and Sc′ , respectively, according to ≻c′ will eventually be rejected.

Thus, any student who is rejected in R(C ′s) must also be rejected in R(Cs).
Thus, the action “school c′ rejects student s′” must be included in R(Cs).

Theorem 5. The time-complexity of the ADA is O(m · n), assuming η can
be calculated in a constant time.

Proof. Here, we consider a slightly modified implementation of the ADA.
For each round, instead of applying the DA from scratch, we start the DA
from the situation where the current tentative assignment is identical to
the assignment obtained in the previous round and a new student has just
arrived. As discussed in the proof of Theorem 4, this change does not affect
the final matching. The time-complexity of the ADA is determined by the
total time required to run the DA repeatedly. Unless some student is rejected
in step (2) in the DA, the DA terminates. A student is rejected by each school
at most once in the ADA (with the above modification). Thus, step (2) in the
DA is executed at most n ·m times. Then, the worst-case time complexity
is O(m · n).

When the family of vectors forms an M♮-convex set, we can apply the
generalized DA. By appropriately choosing the schools’ choice function, we
can make the generalized DA fair. However, it is usually impossible to make
the generalized DA nonwasteful (Kojima, Tamura, and Yokoo, 2014) when
distributional constraints are imposed. Thus, when the students’ welfare
is the primary concern, while the fairness among students is the secondary
concern, we can utilize the ADA, since it can improve the students’ welfare
compared to the generalized DA. We confirm this fact in Section 6.2.

4.2.2 Comparison with baseline mechanisms

It is clear that the ADA is “less wasteful” than the ACDA, since the ADA is
nonwasteful, while the ACDA is not. Intuitively, the ADA seems “more fair”
than the SD, i.e., the number of students who have justified envy in the ADA
should be smaller than that in the SD, since the SD completely ignores the
schools’ priorities, while the ADA utilizes them in the DA. In particular, when
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no additional distributional constraint is imposed, the obtained matching by
the ADA is identical to the DA, since no school becomes forbidden. Then,
the obtained matching by the ADA is fair. We can expect that when the
distributional constraints are not too restrictive, then the obtained matching
by the ADA is “almost fair.”

However, we cannot guarantee the claim “the number of students who
have justified envy in the ADA is smaller than that in the SD” is always
true; there exists a pathological situation where the ADA has more students
with justified envy than the SD.

Example 4.1. Let us consider the following situation.

• There are five students s1, s2, . . . , s5.

• There are three schools c1, c2 and c3.

• The priority of c1 is: s2 ≻c1 s1 ≻c1 s3 ≻c1 s4 ≻c1 s5.

• The priorities of the rest of schools are the same and given as follows:
s2 ≻c s3 ≻c s4 ≻c s5 ≻c s1.

• The preferences of students s1 and s2 are given as: c1 ≻s c2 ≻s c3.

• The preferences of students s3, s4, and s5 are given as: c2 ≻s c3 ≻s c1.

• The maximum quota of schools are given as qc1 = 1, qc2 = 2, and
qc3 = 3.

• The total number of students accepted for {c1, c2} must be at most 2.

Then, η(ζ) = 0 if ζ ≤ (1, 1, 3) or ζ ≤ (0, 2, 3).

In the situation of Example 4.1, the obtained matching by the SD is:
{(s1, c1), (s2, c2), (s3, c3), (s4, c3), (s5, c3)}. Only s2 has justified envy toward
another student (s1).

Now, let us examine the execution of the ADA. In the second round of
Stage 1, s2 is assigned to c1 and s1 is assigned to c2, since s2 has higher
priority in c1. Then, this matching is fixed since c2 is forbidden. The rest of
students are assigned to c3. Then, s3, s4, s5 have justified envy toward s1,
i.e., three students have justified envy.

However, if we compare the worst-case, where the number of students
with justified envy is maximized, we can say that the worst-case number
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of the ADA is smaller than or equal to the number of the SD. Formally,
let JESD(S,C,X,≻S,≻C , qC , η) denote the number of students who have
justified envy under the SD at the market (S,C,X,≻S,≻C , qC , η). Then, let
us define

W SD(S,C, qC , η) = max
X,≻S ,≻C

JESD(S,C,X,≻S,≻C , qC , η).

Let us define JEADA(S,C,X,≻S,≻C , qC , η) andW
ADA(S,C, qC , η) similarly.5

The following theorem holds.

Theorem 6. For any S,C, qC, and η, W
ADA(S,C, qC , η) ≤ W SD(S,C, qC , η)

holds. Also, there exist S,C, qC, and η such thatW
ADA(S,C, qC , η) < W SD(S,C, qC , η)

holds.

Proof. In the ADA, the students assigned in the first stage never have jus-
tified envy. Assume WADA(S,C, qC , η) = JEADA(S,C,X,≻S,≻C , qC , η) =
n − k. If k = n, WADA(S,C, qC , η) ≤ W SD(S,C, qC , η) directly follows. So
assume k < n. Without loss of generality, we can assume X contains all
possible contracts, i.e., each student/school considers all schools/students
acceptable. Furthermore, without loss of generality, we can assume in the
market (S,C,X,≻S,≻C , qC , η), top k students are assigned in the first stage,
and all n − k students who are not assigned in the first stage have justified
envy. If this is not the case, we can modify the preferences of n− k students
and priorities of related schools such that they have justified envy towards a
student assigned in the first stage.

Let X ′ be the matching obtained in the first stage of the ADA. There
must be at least one school that is forbidden after X ′ is fixed. Let c∗ denote
such a school. Consider a slightly modified students’ preference profile ≻̃S,
which is obtained from ≻S as follows. For each student s who is assigned in
the first stage of the ADA, ≻s is modified (if necessary) so that c is her most
preferred school, where X ′

s = {(s, c)}. For each student s who is not assigned

5Comparing the maximum numbers of fairness violations may appear arbitrary. How-
ever, the concept would not be useful if one considers the minimum numbers, because a
fair allocation is certainly possible for some preference configurations, i.e., JESD(S,C,X,
≻S ,≻C , qC , η) = JEADA(S,C,X,≻S ,≻C , qC , η) = 0. While analytic comparisons would
be elusive for the average number of fairness violations unless we impose restrictive as-
sumptions over preference distributions, Section 6 presents simulation results that suggest
the average number of fairness violations in ADA is smaller than the corresponding number
in SD in typical applications.
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in the first stage of the ADA, ≻s is modified (if necessary) so that c∗ is her
most preferred school. Also, consider a slightly modified schools’ priority
profile ≻̃C , which is obtained from ≻C as follows. For c∗, ≻c∗ is modified (if
necessary) so that the priorities of all top k students in the ML is lower than
the remaining n−k students. For other schools, its priority is unchanged. By
running the SD for the market (S,C,X, ≻̃S, ≻̃C , qC , η), the matching for top k
students is identical to X ′. After first k students are assigned, the remaining
n − k students cannot be assigned to c∗. Then, they have justified envy
towards students assigned to c∗. Thus, JESD(S,C,X, ≻̃S, ≻̃C , qC , η) = n−k
holds. As a result, WADA(S,C, qC , η) ≤ W SD(S,C, qC , η) holds.

Also, let us consider a very simple case, where only one school c1 exists
with the maximum quota qc1 = 1. There is no distributional constraint.
There exist n students s1, . . . , sn. Assume the priority of c1 is sn ≻c1 sn−1 ≻c1

. . . ≻c1 s1, then n− 1 students have justified envy in the SD.
Since s1 never has justified envy, W SD(S,C,X,≻S,≻C , qC , η) = n − 1

must be maximal. On the other hand, in the ADA, the obtained matching
is identical to the DA regardless of students’ preferences since no school
becomes forbidden. Thus, WADA(S,C, qC , η) = 0. Thus, there exists a case
where WADA(S,C, qC , η) < W SD(S,C, qC , η) holds.

Let us consider another criterion to compare “fairness” of different mech-
anisms. Let F SD(S,C, qC , η) denote

{(≻S,≻C , X) | the obtained matching by the SD for (S,C,X,≻S,≻C , qC , η) is fair}.

Let us define FADA(S,C, qC , η) similarly. The following theorem holds.

Theorem 7. For any S,C, qC, and η, F
ADA(S,C, qC , η) ⊇ F SD(S,C, qC , η)

holds. Also, there exist S,C, qC, and η, such that F
ADA(S,C, qC , η) ⊋ F SD(S,C, qC , η)

holds.

Proof. Assume the SD obtains a fair matching X ′, i.e., if student s cannot
be assigned to school c, such that (s, c) ≻s X

′
s, then the students in X ′

c

are ranked higher than s according to ≻c. Then, the obtained matching by
the ADA must be identical to that by the SD. Thus, FADA(S,C, qC , η) ⊇
F SD(S,C, qC , η) holds.

Also, if we consider the simple case used in the proof of Theorem 6, it is
clear that FADA(S,C, qC , η) ⊋ F SD(S,C, qC , η) holds.
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This theorem means when the SD obtains a fair matching, then the ADA
also obtains a fair matching.

Let us examine the efficiency of the ADA, SD and ACDA using the con-
cepts introduced in Definition 10. The SD is strongly Pareto efficient, while
the ACDA is not weakly Pareto efficient. The following theorem shows that
the ADA is more efficient than the ACDA, i.e., it is weakly Pareto efficient.

Theorem 8. The matching obtained by the ADA is weakly Pareto efficient
for students.

Proof. It is a well-known fact that the matching obtained by the DA is weakly
Pareto efficient for students. Assume a set of students S ′ is assigned in the
first stage of the ADA, and the obtained matching is X ′. X ′ is identical
to the result of applying the DA for S ′ (ignoring distributional constraints).
Thus, it is impossible to strictly improve the assignments of all students in
S ′ from X ′. As a result, the matching obtained by the ADA is weakly Pareto
efficient for students.

Furthermore, the following theorem shows that there exists no strate-
gyproof mechanism that dominates the ADA.

Theorem 9. There exists no mechanism that is strategyproof and dominates
the ADA.

Proof. Let φ denote the ADA. For contradiction, suppose that there exists
another mechanism ψ that is strategyproof and dominates the ADA. Let s
and preference profile ≻S be such that ψs(≻S) ≻s φs(≻S). Without loss of
generality, let us choose s and ≻S such that s is assigned in the earliest stage
with this property. More precisely, if another pair s′ (̸= s) and ≻′

S satisfies
this property, and s is assigned in Stage k, while s′ is assigned in Stage k′,
then k ≤ k′ holds. Note that such s and ≻S exist by definition. We begin
by establishing the following lemma.

Lemma 4.2. For any student s and preference profile ≻S with the above
property, φs(≻S) ̸= ∅ and ψs(≻S) ̸= ∅.

Proof. The claim ψs(≻S) ̸= ∅ follows because ψs(≻S) ≻s φs(≻S) and φ
always obtains a student-feasible matching.

To show φs(≻S) ̸= ∅, let k be the stage at which s is assigned and Sk be
the set of students who are assigned at Stage k in the ADA with preference
profile ≻S. Because of the choice of s, φs′(≻S) = ψs′(≻S) for every s′ who
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has been assigned in any Stage k′ < k. So, the restriction of the assignment
under ψ to students at Sk is feasible at school capacity profile qk (as defined in
the ADA) and this assignment is also weakly preferred to the outcome of the
ADA by all students in Sk, with at least one strictly preferred. Because the
assignment for every student in Sk is identical to the outcome of the DA under
capacity profile qk, by a claim in the proof of Theorem 1 of Abdulkadiroğlu,
Pathak, and Roth (2009), the subsets of students in Sk who are matched to
some school in φ(≻S) and ψ(≻S) are identical. This fact and ψs(≻S) ̸= ∅
imply φs(≻S) ̸= ∅.

Now we are ready to prove the theorem. To do so, let s and ≻S be
a student-preference profile pair as in Lemma 4.2. Now, consider another
preference ≻′

s of student s, which lists only ψs(≻S) as the acceptable school
(note that ψs(≻S) ̸= ∅ by the second statement of Lemma 4.2). Let ≻′

S:=
(≻′

s,≻−s). Then,

1. ψs(≻′
S) = ψs(≻S): To show this, assume for contradiction ψs(≻′

S) ̸=
ψs(≻S). Then, under mechanism ψ, student s whose preference is ≻′

s

is made better off by reporting ≻s and thereby obtaining her most
preferred school ψs(≻S), which contradicts strategyproofness of ψ.

2. φs(≻′
S) = ∅: To show this, note that φs(≻′

S) ⪰s ∅ by student-feasibility
of φ. So, if φs(≻′

S) ̸= ∅, then φs(≻′
S) = ψs(≻′

S). But then, student
s whose preference is ≻s is made better off by reporting ≻′

s under φ,
which contradicts strategyproofness of φ.

The above statements contradict Lemma 4.2 with respect to s and ≻′
S, which

completes the proof of the theorem.6

Let us introduce another criterion for comparing fairness. For matching
X ′, let Ev(X ′) := {(s, s′) | s has justified envy towards s′ in X ′}. Then, we
say X ′ is more fair than X ′′ if Ev(X ′) ⊊ Ev(X ′′) holds. Also, we say X ′ is
equally fair to X ′′ if Ev(X ′) = Ev(X ′′) holds.

There exists a trade-off between fairness and efficiency. We say matching
X ′ is in the Pareto frontier (in terms of fairness and efficiency) if there exists

6Note that it is with respect to≻′
S , and not≻S , that we derive the desired contradiction.

However, the application of Lemma 4.2 is correct because we have taken s and ≻S to be
arbitrary with the restriction that ψs(≻S) ≻s φs(≻S) and s is assigned in the earliest
stage, which holds not only for ≻S but also for ≻′

S .
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no X ′′ such that X ′′ Pareto dominates X ′ and X ′′ is more fair than or equally
fair to X ′′.

The following theorem holds.

Theorem 10. The matching obtained by the ADA is in the Pareto frontier.

Proof. Let X ′ be the matching obtained by the ADA and X ′′ is a matching
that Pareto dominates X ′. Let k be the first stage in the ADA such that
there exists a student who strictly prefers X ′′ to X ′. Let Sk be the set of
students assigned at Stage k. Because of the choice of k, the assignments
for students at X ′ and X ′′ in any Stage k′ < k are identical. Also, the
assignment at X ′ to students in Sk is the student-optimal stable matching
at school capacity profile qk (as defined in the ADA). This fact implies that
there exists s, s′ ∈ Sk such that (s, s′) ∈ Ev(X ′′) holds. Since there exists
no justified envy between students assigned at the same stage in the ADA,
(s, s′) ̸∈ Ev(X ′). Thus, Ev(X ′′) ⊆ Ev(X ′) does not hold. Thus, X ′′ cannot
be more fair than or equally fair to X ′.

5 Handling non-hereditary cases

There are several application domains where distributional constraints do not
satisfy heredity. For example, when minimum quotas are imposed, or each
student is required to be matched to some school, then η does not satisfy
heredity, since ζ(∅) is not admissible in η. In this section, we introduce a
simple trick to handle such non-hereditary constraints.

Assume η is not hereditary. To run the ADA (or the SD), let us define
another function η̃ as follows: η̃(ζ) is 0 if there exists ζ ′ ≥ ζ such that
η(ζ ′) = 0, and otherwise, −∞. It is clear that η̃ is hereditary. If we use η̃
instead of η, we can run the ADA, but the obtained set of contracts X ′ might
be infeasible, i.e., η̃(ζ(X ′)) = 0 but η(ζ(X ′)) might be −∞. However, if we
can guarantee that X ′ is maximal, i.e., there exists no ζ > ζ(X ′) such that
ζ is admissible in η, then, the ADA (or the SD) always obtains a feasible set
of contracts.

Also, to run the ACDA, we can simply use the original η to choose an
admissible and maximal ζ in η. If we can guarantee that the obtained match-
ing X ′ by the ACDA is maximal, the ACDA always obtains a feasible set of
contracts.
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If we can assume each student/school considers all schools/students ac-
ceptable, the ADA (or the SD) always obtains a maximal matching. To be
more precise, in the ADA, assume student s is not assigned to any school at
Stage k. Then, it is clear that no more student can be assigned in the later
stages. For the obtained set of contracts X ′, for any i ∈M , ζ(X ′)+χi is not
admissible in η, since if ζ(X ′) + χi is admissible in η, s must be accepted to
ci. Thus, X

′ is maximal.
Also, consider the ACDA where for all ci ∈ C, q̂ci = ζi holds. Since we

assume η respects the number of students,
∑

i∈M ζi ≤ n holds. In the DA,
when each student/school considers all schools/students acceptable, then all
schools are full when the sum of maximum quotas is less than or equal to n.
Thus, for all i ∈M , |X ′

ci
| = q̂ci = ζi holds. Thus, X

′ is maximal.
We have shown that, in principle, our mechanism can work for any con-

straints that are not hereditary, as long as we can guarantee that obtained
matchings are maximal. However, to guarantee the ADA is computationally
efficient, we require that η̃(X ′) can be computed efficiently. Also, to run
the ACDA, we need to find an admissible and maximal ζ. It must be noted
that even when η(X ′) can be computed efficiently, there exists a case where
computing η̃(X ′), or finding an admissible and maximal ζ, is difficult.

For example, Goto, Hashimoto, Iwasaki, Kawasaki, Ueda, Yasuda, and
Yokoo (2014) show that checking whether a feasible set of contracts exists
or not is NP-complete when regional minimum/maximum quotas exist and a
region can be any subset of schools. Here, calculating η(X ′), i.e., checking a
given set of contractsX ′ is feasible, is easy, i.e., it can be done in a polynomial
time. However, calculating η̃(X ′) is difficult, since we need to check the
existence of a feasible set of contracts X ′′ such that X ′′ ⊇ X ′, which is
NP-complete. Also, finding an admissible and maximal ζ is difficult.

6 Applications

In this section, we investigate how to represent actual application domains
in our model, and examine the performance of our mechanism.
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6.1 Controlled school choice problem with hard mini-
mum and maximum quotas

We first examine a controlled school choice problem with hard minimum and
maximum quotas presented in Ehlers, Hafalir, Yenmez, and Yildirim (2014).
School choice programs are implemented to give students/parents an oppor-
tunity to choose the public school the students attend. However, a school is
required to satisfy balance on the composition of students, typically in terms
of socioeconomic status. Controlled school choice programs need to provide
choices for students/parents while maintaining distributional constraints.
The model presented in Ehlers, Hafalir, Yenmez, and Yildirim (2014) in-
corporates hard minimum and maximum quotas for each type of students,
so that a policy maker can precisely describe her requirements/constraints.
However, Ehlers, Hafalir, Yenmez, and Yildirim (2014) show several negative
results in this model. As far as the authors aware, our paper is the first to
develop a non-trivial strategyproof and nonwasteful mechanism that works
in this model.

6.1.1 Model

A market is a tuple (S,C,X,≻S,≻C , qC , T, τ, q
T
C
, qTC). The meaning of each

element is as follows.

• The definitions of S,C,X,≻S,≻C , and qC are identical to the standard
model. We assume each student/school considers all schools/students
acceptable.

• One major difference is that we assume each student s has her type
τ(s) ∈ T = {t1, . . . , tk}. A type of a student may represent race,
income, gender, or any socioeconomic status.

• Each school has minimum and maximum quotas for each type t, i.e.,
qT
C
= (qT

c
)c∈C and qTC = (qTc )c∈C , where q

T
c
= (qt

c
)t∈T and qTc = (qtc)t∈T .

• Each qt
c
and qtc represent minimum and maximum quotas for type t

students at school c.

• We assume
∑

t∈T q
t
c
≤ qc ≤

∑
t∈T q

t
c holds. In words, the minimum

quotas for all types in c can be satisfied without violating the maxi-
mum quota of the school, and the maximum quota of the school is not
superfluous.
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• Let nt denote the number of type t students and n =
∑

t∈T n
t.

• We assume
∑

c∈C q
t
c
≤ nt ≤

∑
c∈C q

t
c holds for all t ∈ T . In words, for

each school, there exist enough type t students to satisfy its minimum
quotas, and its maximum quotas are large enough to accommodate all
type t students.

• For X ′ ⊆ X, let X ′
c,t denote {(s, c) ∈ X ′ | s ∈ S, τ(s) = t}, and X ′

t

denote {(s, c) ∈ X ′ | c ∈ C, s ∈ S, τ(s) = t}.

Next, we define feasibility and fairness in this setting.

Definition 12 (feasibility). We say X ′ ⊆ X is school-feasible if |X ′
t| = nt

for all t ∈ T , |X ′
c| ≤ qc for all c, and q

t
c
≤ |X ′

c,t| ≤ qtc for all c and for all t.
We say X ′ ⊆ X is student-feasible if |X ′

s| = 1 and X ′
s is acceptable for

all s. Then, we say X ′ is feasible if it is student- and school-feasible.

Note that when assigning students to public schools, it is required that
a student must be matched to some school. Thus, we require that |X ′

t| = nt

holds for all t ∈ T .

Definition 13 (fairness). For a matching X ′, we say student s has justified
envy towards another student s′ of the same type if τ(s) = τ(s′), (s′, c) ∈
X ′, (s, c) ≻s X

′
s, and (s, c) ≻c (s

′, c). We say a matching X ′ is fair for same
types if no student has justified envy towards another student of the same
type.

Definition 14 (nonwastefulness). For a matching X ′, we say student s,
whose type is t and currently assigned to c′ in X ′, claims an empty seat of
school c if (s, c) ≻s (s, c′), |X ′

c| < qc, |X ′
c,t| < qtc, and |X ′

c′,t| > qt
c′
hold. We

say a matching X ′ is nonwasteful if no student claims an empty seat.
Also, we say X ′ is constrained nonwasteful, if whenever student s claims

an empty seat of school c, the matching obtained by reassigning s to c is not
fair for same types.

Ehlers, Hafalir, Yenmez, and Yildirim (2014) show that a matching that is
fair for same types and nonwasteful may not exist. Also, they show that there
exists no strategyproof mechanism that is guaranteed to obtain a matching
that is fair for same types and constrained nonwasteful.
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6.1.2 Representation in our model

We can represent this problem setting in our model as follows.

• We assume school ci is divided into separate sub-schools for each type,
i.e., there are sub-schools ct1i , c

t2
i , . . . , c

tk
i .

• Each sub-school cti has its minimum quota qt
ci
, and its maximum quota

qtci .

• We assume cti can accept only type t students.

• We assume ζ is an m × k matrix. We also assume ζ(X ′) is an m ×
k matrix, where each ζi,j(X

′) represents |X ′
ci,tj
|, i.e., the number of

students allocated to sub-school c
tj
i .

• η(ζ) is 0 if for all j ∈ K,
∑

i∈M ζi,j = ntj , for all i ∈M ,
∑

j∈K ζi,j ≤ qci ,

and for all i ∈ M , j ∈ K, qtj
ci
≤ ζi,j ≤ q

tj
ci hold, where K denote

{1, . . . , k}.

Note that this η is not hereditary. To run the ADA, let us define another
function η̃ as follows. η̃(ζ) is 0 if there exists ζ ′ ≥ ζ such that η(ζ ′) = 0,
and otherwise, −∞. Assuming each type t student/school considers all type t
schools/students acceptable, we can guarantee that the obtained matchingX ′

by the ADA is maximal/feasible. The ADA is strategyproof and nonwasteful.
We can apply the ACDA if we can find an admissible and maximal ζ.

We can guarantee that the ACDA, where the maximum quota for each sub-
school c

tj
i is given by ζi,j, obtains a maximal matching, since

∑
j∈K ζi,j = ntj

holds, and each type t student/school considers all type t schools/students
acceptable. Note that the ACDA guarantees the fairness within each sub-
school, which corresponds to the fairness for same types.

The remaining issues are, whether we can calculate η̃(X ′) efficiently, and
whether we can find an admissible ζ efficiently. Note that in the current
setting, any admissible ζ is also maximal, since we require for all j ∈ K,∑

i∈M ζi,j = ntj holds.
Let us consider the problem of checking the existence of an admissible ζ.

First, we eliminate minimum quotas as follows. We replace nt by nt−
∑

c∈C q
t
c
,

n by n−
∑

c∈C,t∈T q
t
c
, qtc by q

t
c − qtc, and qc by qc −

∑
t∈T q

t
c
.
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Figure 2: Ratio of stu-
dents with justified envy
of the same type
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dents claiming an empty
seat
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Figure 4: CDFs of stu-
dents’ welfare

For this modified problem with maximum quotas only, we can check the
existence of an admissible ζ as follows. First, we construct a maximum flow
problem as follows.

• There exists a unique source vertex vs and a unique terminal vertex ve.

• For each type t, there exists a type vertex vt. From vs to vt, there exists
a directed edge with capacity nt.

• For each sub-school ct, there exists a sub-school vertex vct . From vt to
vct , there exists a directed edge with capacity nt.

• For each school c, there exists a school vertex vc. From vct to vc, there
exists a directed edge with capacity qtc. Also, from vc to ve, there exists
a directed edge with capacity qc.

An admissible ζ exists if and only if the maximum flow of the above prob-
lem is equal to n. The flow from vt to vct represents the number of type t
students assigned to school c. There exists several well-known algorithms for
efficiently solving a maximum flow problem Cormen, Leiserson, Rivest, and
Stein (2009).

To calculate η̃(X ′), we first fix the flow corresponding to X ′. Then, solve
the maximum flow problem for the residual capacities.

6.1.3 Evaluation

We evaluate the performance of mechanisms via computer simulation. We
consider a market with n = 512 students andm = 16 schools. The individual
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maximum quota for each school qc is 48. The number of types is 4 and
there are 128 students of each type. For all type t and school c, we set
qt
c
= 4, qtc = 16.
We generate students’ preferences as follows. We draw one common vector

ut,c of the cardinal utilities for each type t from set [0, 1]m uniformly at
random. We then randomly draw private vector us of the cardinal utilities
from the same set, again uniformly at random. Next, we construct cardinal
utilities over all m schools for student s with type t as αut,c + (1 − α)us,
for some α ∈ [0, 1]. We then convert these cardinal utilities into an ordinal
preference relation for each student. The higher the value of α, the more
correlated the students’ preferences are. In this experiment, we vary α from
0.0 to 1.0 with an increment of 0.1. School priorities ≻c are drawn uniformly
at random, and ML is set to s1, . . . , s512. Students s1, s5, s9, . . . , s509 are type
t1 students, students s2, s6, s10, . . . , s510 are type t2 students, and so on. We
create 100 problem instances for each parameter setting.

Figure 2 shows the ratio of students with justified envy of the same type,
and Figure 3 shows the ratio of student who claim an empty seat. The x-axis
denotes α and the y-axis denotes the average ratio of students. The ratio of
students with justified envy of the ACDA is 0 since it is fair. Also, ratios of
students claiming an empty seat of the SD and the ADA are 0 since these
mechanisms are nonwasteful.

In Figure 2, we can see the ADA performs better than the SD regardless
of α. The difference between the ADA and the SD becomes larger as α
increases, i.e., the competition among students becomes more severe. In
Figure 3, We can see that the ACDA is extremely wasteful; when α ≥ 0.5,
more than 90% students claim an empty seat.

Figure 4 shows the students’ welfare by plotting the Cumulative Distribu-
tion Functions (CDFs) of the average number of students matched with their
k-th or higher ranked school under each mechanism when α = 0.6. Hence, a
steep upper trend line is desirable. We can see that in terms of the students’
welfare, the SD and the ADA are almost identical. The performance of the
ACDA is much worse than the nonwasteful mechanisms.

6.2 Regional minimum quotas

Next, we consider a case where schools are hierarchically organized into
regions and for each region, a regional minimum quota is imposed Goto,
Hashimoto, Iwasaki, Kawasaki, Ueda, Yasuda, and Yokoo (2014). A hier-
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archical structure is ubiquitous in any organization (company, university, or
military). When an organization allocates human resources, it is natural to
assume that the obtained matching must satisfy feasibility constraints of the
various levels in the organization’s hierarchy, e.g., each division, department,
or section has its own minimum quota. Such a feasibility constraint can
naturally be represented by regional minimum quotas.

In this setting, the family of vectors that satisfy distributional constraints
forms an M♮-convex set. Thus, we can apply the generalized DA of Goto,
Hashimoto, Iwasaki, Kawasaki, Ueda, Yasuda, and Yokoo (2014) and Ko-
jima, Tamura, and Yokoo (2014). We show that even in such a setting, the
ADA can be useful since it can improve students’ welfare.

6.2.1 Model

A market is a tuple (S,C,R, pR, qC ,≻S,≻C). The meaning of each element
is as follows.

• The definitions of S,C,X,≻S,≻C , and qC are identical to the standard
model.

• A region r ∈ R is a subset of schools, i.e., r ∈ 2C \ {∅}.

• We assume the set of regions R is hierarchical, i.e., ∀r, r′ ∈ R where
r ̸= r′, one of the following holds: (a) r ∩ r′ = ∅, (b) r ⊂ r′, or (c)
r′ ⊂ r.

• We can construct a tree TR for R as follows: (i) root node C is the region
that contains all schools, (ii) leaf node {c} is a region that contains only
one individual school c ∈ C, and (iii) for each node r ∈ R, where r ̸= C,
its parent node r′ ∈ R is a region that is the proper inclusion-minimal
superset of r.

• pR = (pr)r∈R are regional minimum quota vectors. We assume 0 ≤
pr ≤

∑
c∈r qc holds for all r ∈ R.

• We assume that all schools are acceptable to all students and vice versa.

• Let X ′
r denote {(s, c) ∈ X ′ | s ∈ S, c ∈ r}.
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• We assume that C, which is the region that contains all schools, is
included in R with a non-binding minimum quota pC = n, where n is
the number of students.

• children(r) denotes a set of child nodes of r. For a leaf node, i.e., r =
{c}, children(r) is ∅. It is clear that r =

∪
r′∈children(r) r

′ holds for |r| ≥ 2.
We will often use the terms “node” and “region” interchangeably.

Next, we define school-feasibility in this setting.

Definition 15 (school-feasibility). We say a set of contracts X ′ is school-
feasible if ∀c ∈ C, |X ′

c| < qc and ∀r ∈ R, pr ≤ |X ′
r| hold.

Without loss of generality, we can assume for each r ∈ R, the following
condition holds: pr ≥

∑
r′∈children(r) pr′ . If this is not true, the minimum

quota of r is non-binding and we can set pr to
∑

r′∈children(r) pr′ .

Goto, Hashimoto, Iwasaki, Kawasaki, Ueda, Yasuda, and Yokoo (2014)
show that if pr ≤

∑
c∈r qc holds for each region r, a feasible matching always

exists. In this paper, we assume this condition holds. This condition implies
pC = n ≤

∑
c∈C qc holds. Since we assume that all schools are acceptable to

all students and vice versa, a student will be matched to some school. Goto,
Hashimoto, Iwasaki, Kawasaki, Ueda, Yasuda, and Yokoo (2014) show a fair
mechanism called Round-robin Selection Order Deferred Acceptance mech-
anism for regional minimum quotas (RSDA-RQ) based on the generalized
DA. The RSDA-RQ is wasteful.

6.2.2 Representation in our model

We assume η(ζ) is 0 if for all ci ∈ C, ζi ≤ qci , for all r ∈ R, pr ≤
∑

ci∈r ζi,
and

∑
ci∈C ζi = n hold.

This η is not hereditary. To run the ADA, let us define another function
η̃ as follows. η̃(ζ) is 0 if there exists ζ ′ ≥ ζ such that η(ζ ′) = 0, and oth-
erwise, −∞. Assuming each student/school considers all schools/students
acceptable, we can guarantee that the obtained matching X ′ by the ADA is
maximal/feasible. The ADA is strategyproof and nonwasteful.

We can apply the ACDA if we can find an admissible and maximal ζ. We
can guarantee that the ACDA, where the maximum quota for each school ci is
given by ζi, obtains a maximal matching, since

∑
i∈M ζi = n holds, and each

student/school considers all schools/students acceptable. Thus, the ACDA
obtains a feasible set of contracts.
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Figure 5: Ratio of stu-
dents with justified envy
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dents claiming an empty
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Figure 7: CDFs of stu-
dents’ welfare

We can calculate η̃ efficiently by using a concept called an expected min-
imum count.

Definition 16 (expected minimum count). For each region r, emc(r, ζ),
the expected minimum count of ζ for r, is defined as follows: if |r| ≥ 2,
emc(r, ζ) = max(pr,

∑
r′∈children(r) emc(r

′, ζ)), and if r = {ci}, emc(r, ζ) =

max(pr, ζi).

Intuitively, the expected minimum count of ζ for r means the minimum
number of students assigned to region r, when some more students are added
to satisfy regional minimum quotas for all r′ ⊆ r. Thus, if ζ already satisfies
minimum quotas for all r′ ⊆ r, i.e.,

∑
ci∈r′ ζi ≥ pr′ holds, then emc(r

′, ζ) =∑
ci∈r′ ζi holds. Also, if ζ

′ > ζ, then emc(C, ζ ′) ≥ emc(C, ζ) holds.
By using expected minimum counts, we calculate η̃ as follows: η̃(ζ) is 0

if for all i ∈M , ζi ≤ qci and emc(C, ζ) = n hold, and otherwise, −∞.
It is clear that ζi > qci for some i, there exists no ζ ′ ≥ ζ such that ζ ′

is admissible in η. Also, assume emc(C, ζ) > n holds. If ζ already satisfies
all minimum quotas, then emc(C, ζ) =

∑
i∈M ζi > n. Thus, there exists no

ζ ′ ≥ ζ such that ζ ′ is admissible in η. If ζ does not satisfy some minimum
quota, we need to add some more students to satisfy all minimum quotas.
Assume ζ ′ > ζ satisfies all minimum quotas. Since emc(C, ζ ′) =

∑
i∈M ζ ′i ≥

emc(C, ζ) > n, ζ ′ is not admissible in η. Also, as long as for all i ∈ M ,
ζi ≤ qci and emc(C, ζ) = n hold, we can find ζ ′ ≥ ζ such that ζ ′ is admissible
in η.
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6.2.3 Evaluation

We consider a market with n = 512 students and m = 64 schools. The
individual maximum quota for each school qc is 40. We set a tree structure
to an octary tree. In an octary tree, each node has eight children. Thus,
the height of the tree is two, i.e., schools are divided into eight regions, each
of which contains eight schools. We set the individual minimum quota for
each individual school pc to 0 and regional minimum quota for each region
pr = 32. Students’ preferences, schools’ priority, and ML are generated in
the same way as described in Section 6.1.3. We create 100 problem instances
for each parameter setting. We follow these parameter settings according to
Goto, Hashimoto, Iwasaki, Kawasaki, Ueda, Yasuda, and Yokoo (2014).

Figure 5 shows the ratio of students with justified envy, and Figure 6
shows the ratio of student who claims an empty seat. About the ratio of
students with justified envy, the ADA performs better than the SD regardless
of α. In the SD, the number of students with justified envy quickly increases
as α increases. On the other hand, in the ADA, the ratio increases rather
slowly as α increases and remains below 0.1. From Figure 6, we can see that
the ACDA is extremely wasteful; when α ≥ 0.2, more than 90% students
claim an empty seat. The RSDA-RQ is better than the ACDA, but it is still
wasteful; when α ≥ 0.5, more than 60% students claim an empty seat.

Figure 7 shows the CDFs of students’ welfare when α = 0.6. We can
see that in terms of the students’ welfare, the SD and the ADA are almost
identical, although the number of students who are assigned to their most
preferred schools is slightly larger in the SD. Also, the ADA improves stu-
dents’ welfare compared to the RSDA-RQ. Thus, when the primary concern
is students’ welfare, and the secondary concern is the fairness, the ADA seems
to be the right choice.

7 Conclusions

In this paper, we developed a strategyproof mechanism that can be applied to
general distributional constraints. Our newly developed mechanism (ADA) is
nonwasteful and “more fair” than the SD mechanism in several senses. Also,
it is “less wasteful” than the ACDA since it is nonwasteful, while the ACDA
is not. To demonstrate the applicability of our model in actual application
domains, we examined a controlled school choice problem with hard minimum
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and maximum quotas, as well as a setting where regional minimum quotas are
imposed. Simulation results showed that the number of students who have
justified envy in the ADA is smaller than that in the SD, and the students’
welfare is improved compared to the ACDA, as well as the generalized DA
when it is applicable.
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