230 research outputs found

    Photoluminescence in mammal fur: 111 years of research

    Get PDF
    Photoluminescence in the pelage of mammals, a topic that has gained considerable recent research interest, was first documented in the 1700s and reported sporadically in the literature over the last century. The first detailed species accounts were of rabbits and humans, published 111 years ago in 1911. Recent studies have largely overlooked this earlier research into photoluminescent mammalian taxa and their luminophores. Here we provide a comprehensive update on existing research on photoluminescence in mammal fur, with the intention of drawing attention to earlier pioneering research in this field. We provide an overview on appropriate terminology, explain the physics of photoluminescence, and explore pigmentation and the ubiquitous photoluminescence of animal tissues, before touching on the emerging debate regarding visual function. We then provide a chronological account of research into mammalian fur photoluminescence, from the earliest discoveries and identification of luminophores to the most recent studies. While all mammal fur is likely to have a general low-level photoluminescence due to the presence of the protein keratin, fur glows luminously under ultraviolet light if it contains significant concentrations of tryptophan metabolites or porphyrins. Finally, we briefly discuss issues associated with preserved museum specimens in studies of photoluminescence. The study of mammal fur photoluminescence has a substantial history, which provides a broad foundation on which future studies can be grounded

    The roles of charge exchange and dissociation in spreading Saturn's neutral clouds

    Full text link
    Neutrals sourced directly from Enceladus's plumes are initially confined to a dense neutral torus in Enceladus's orbit around Saturn. This neutral torus is redistributed by charge exchange, impact/photodissociation, and neutral-neutral collisions to produce Saturn's neutral clouds. Here we consider the former processes in greater detail than in previous studies. In the case of dissociation, models have assumed that OH is produced with a single speed of 1 km/s, whereas laboratory measurements suggest a range of speeds between 1 and 1.6 km/s. We show that the high-speed case increases dissociation's range of influence from 9 to 15 Rs. For charge exchange, we present a new modeling approach, where the ions are followed within a neutral background, whereas neutral cloud models are conventionally constructed from the neutrals' point of view. This approach allows us to comment on the significance of the ions' gyrophase at the moment charge exchange occurs. Accounting for gyrophase: (1) has no consequence on the H2O cloud; (2) doubles the local density of OH at the orbit of Enceladus; and (3) decreases the oxygen densities at Enceladus's orbit by less than 10%. Finally, we consider velocity-dependent, as well as species-dependent cross sections and find that the oxygen cloud produced from charge exchange is spread out more than H2O, whereas the OH cloud is the most confined.Comment: Accepted to the Journal of Geophysical Research, 49 pages, 10 figure

    Solar wind dynamic pressure and electric field as the main factors controlling Saturn's aurorae

    Full text link
    The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms(1), but the relation between the solar wind and the dynamics of the outer planets' magnetospheres is poorly understood. Jupiter's magnetospheric dynamics and aurorae are dominated by processes internal to the jovian system(2), whereas Saturn's magnetosphere has generally been considered to have both internal and solar-wind-driven processes. This hypothesis, however, is tentative because of limited simultaneous solar wind and magnetospheric measurements. Here we report solar wind measurements, immediately upstream of Saturn, over a one-month period. When combined with simultaneous ultraviolet imaging(3) we find that, unlike Jupiter, Saturn's aurorae respond strongly to solar wind conditions. But in contrast to Earth, the main controlling factor appears to be solar wind dynamic pressure and electric field, with the orientation of the interplanetary magnetic field playing a much more limited role. Saturn's magnetosphere is, therefore, strongly driven by the solar wind, but the solar wind conditions that drive it differ from those that drive the Earth's magnetosphere.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62975/1/nature03333.pd

    Forecasting the duration of volcanic eruptions: an empirical probabilistic model

    Get PDF
    The ability to forecast future volcanic eruption durations would greatly benefit emergency response planning prior to and during a volcanic crises. This paper introduces a probabilistic model to forecast the duration of future and on-going eruptions. The model fits theoretical distributions to observed duration data and relies on past eruptions being a good indicator of future activity. A dataset of historical Mt. Etna flank eruptions is presented and used to demonstrate the model. The data has been compiled through critical examination of existing literature along with careful consideration of uncertainties on reported eruption start and end dates between the years 1300 AD and 2010 and data following 1600 is considered to be reliable and free of reporting biases. The distribution of eruption durations between the years 1600 and 1670 is found to be statistically different from that following 1670 and represents the culminating phase of a century-scale cycle. The forecasting model is run on two datasets ofMt. Etna flank eruption durations; 1600-2010 and 1670-2010. Each dataset is modelled using a log-logistic distribution with parameter values found by maximum likelihood estimation. Survivor function statistics are applied to the model distributions to forecast (a) the probability of an eruption exceeding a given duration, (b) the probability of an eruption that has already lasted a particular number of days exceeding a given total duration and (c) the duration with a given probability of being exceeded. Results show that excluding the 1600-1670 data has little effect of the forecasting model result, especially where short durations are involved. By assigning the terms ‘likely’ and ‘unlikely’ to probabilities of 66 % and 33 %, respectively the forecasting model is used on the 1600-2010 dataset to indicate that a future flank eruption on Mt. Etna would be likely to exceed 20 days (± 7 days) but unlikely to exceed 68 days (± 29 days). This model can easily be adapted for use on other highly active, well-documented volcanoes or for different duration data such as the duration of explosive episodes or the duration of repose periods between eruptions

    Muscle and reflex changes with varying joint angle in hemiparetic stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite intensive investigation, the origins of the neuromuscular abnormalities associated with spasticity are not well understood. In particular, the mechanical properties induced by stretch reflex activity have been especially difficult to study because of a lack of accurate tools separating reflex torque from torque generated by musculo-tendinous structures. The present study addresses this deficit by characterizing the contribution of neural and muscular components to the abnormally high stiffness of the spastic joint.</p> <p>Methods</p> <p>Using system identification techniques, we characterized the neuromuscular abnormalities associated with spasticity of ankle muscles in chronic hemiparetic stroke survivors. In particular, we systematically tracked changes in muscle mechanical properties and in stretch reflex activity during changes in ankle joint angle. Modulation of mechanical properties was assessed by applying perturbations at different initial angles, over the entire range of motion (ROM). Experiments were performed on both paretic and non-paretic sides of stroke survivors, and in healthy controls.</p> <p>Results</p> <p>Both reflex and intrinsic muscle stiffnesses were significantly greater in the spastic/paretic ankle than on the non-paretic side, and these changes were strongly position dependent. The major reflex contributions were observed over the central portion of the angular range, while the intrinsic contributions were most pronounced with the ankle in the dorsiflexed position.</p> <p>Conclusion</p> <p>In spastic ankle muscles, the abnormalities in intrinsic and reflex components of joint torque varied systematically with changing position over the full angular range of motion, indicating that clinical perceptions of increased tone may have quite different origins depending upon the angle where the tests are initiated.</p> <p>Furthermore, reflex stiffness was considerably larger in the non-paretic limb of stroke patients than in healthy control subjects, suggesting that the non-paretic limb may not be a suitable control for studying neuromuscular properties of the ankle joint.</p> <p>Our findings will help elucidate the origins of the neuromuscular abnormalities associated with stroke-induced spasticity.</p
    • …
    corecore