1,366 research outputs found

    A 6-12 GHz Analogue Lag-Correlator for Radio Interferometry

    Get PDF
    Aims: We describe a 6-12 GHz analogue correlator that has been developed for use in radio interferometers. Methods: We use a lag-correlator technique to synthesis eight complex spectral channels. Two schemes were considered for sampling the cross-correlation function, using either real or complex correlations, and we developed prototypes for both of them. We opted for the ``add and square'' detection scheme using Schottky diodes over the more commonly used active multipliers because the stability of the device is less critical. Results: We encountered an unexpected problem, in that there were errors in the lag spacings of up to ten percent of the unit spacing. To overcome this, we developed a calibration method using astronomical sources which corrects the effects of the non-uniform sampling as well as gain error and dispersion in the correlator.Comment: 14 pages, 21 figures, accepted for publication in A&

    A 6-12 GHz Analogue Lag-Correlator for Radio Interferometry

    Get PDF
    Aims: We describe a 6-12 GHz analogue correlator that has been developed for use in radio interferometers. Methods: We use a lag-correlator technique to synthesis eight complex spectral channels. Two schemes were considered for sampling the cross-correlation function, using either real or complex correlations, and we developed prototypes for both of them. We opted for the ``add and square'' detection scheme using Schottky diodes over the more commonly used active multipliers because the stability of the device is less critical. Results: We encountered an unexpected problem, in that there were errors in the lag spacings of up to ten percent of the unit spacing. To overcome this, we developed a calibration method using astronomical sources which corrects the effects of the non-uniform sampling as well as gain error and dispersion in the correlator.Comment: 14 pages, 21 figures, accepted for publication in A&

    Correlated X-ray and Optical Variability in Mkn 509

    Full text link
    We present results of a 3 year monitoring campaign of the Seyfert 1 galaxy Markarian 509, using X-ray data from the Rossi X-ray Timing Explorer (RXTE) and optical data taken by the SMARTS consortium. Both light curves show significant variations, and are strongly correlated with the optical flux leading the X-ray flux by 15 days. The X-ray power spectrum shows a steep high-frequency slope of -2.0, breaking to a slope of -1.0 at at timescale of 34 days. The lag from optical to X-ray emission is most likely caused by variations in the accretion disk propagating inward.Comment: 13 pages, 3 figures. Accepted for publication in the Astrophysical Journa

    Is attending a mental process?

    Get PDF
    The nature of attention has been the topic of a lively research programme in psychology for over a century. But there is widespread agreement that none of the theories on offer manage to fully capture the nature of attention. Recently, philosophers have become interested in the debate again after a prolonged period of neglect. This paper contributes to the project of explaining the nature of attention. It starts off by critically examining Christopher Mole’s prominent “adverbial” account of attention, which traces the failure of extant psychological theories to their assumption that attending is a kind of process. It then defends an alternative, process-based view of the metaphysics of attention, on which attention is understood as an activity and not, as psychologists seem to implicitly assume, an accomplishment. The entrenched distinction between accomplishments and activities is shown to shed new light on the metaphysics of attention. It also provides a novel diagnosis of the empirical state of play

    Personal and sub-personal: a defence of Dennett's early distinction

    Get PDF
    Since 1969, when Dennett introduced a distinction between personal and sub‐personal levels of explanation, many philosophers have used ‘sub‐personal’ very loosely, and Dennett himself has abandoned a view of the personal level as genuinely autonomous. I recommend a position in which Dennett's original distinction is crucial, by arguing that the phenomenon called mental causation is on view only at the properly personal level. If one retains the commit‐’ ments incurred by Dennett's early distinction, then one has a satisfactory anti‐physicalistic, anti‐dualist philosophy of mind. It neither interferes with the projects of sub‐personal psychology, nor encourages ; instrumentalism at the personal level. People lose sight of Dennett’s personal/sub-personal distinction because they free it from its philosophical moorings. A distinction that serves a philosophical purpose is typically rooted in doctrine; it cannot be lifted out of context and continue to do its work. So I shall start from Dennett’s distinction as I read it in its original context. And when I speak of ‘the distinction’, I mean to point not only towards the terms that Dennett first used to define it but also towards the philosophical setting within which its work was cut out

    Radio Galaxy NGC 1265 unveils the Accretion Shock onto the Perseus Galaxy Cluster

    Full text link
    We present a consistent 3D model for the head-tail radio galaxy NGC 1265 that explains the complex radio morphology and spectrum by a past passage of the galaxy and radio bubble through a shock wave. Using analytical solutions to the full Riemann problem and hydrodynamical simulations, we study how this passage transformed the plasma bubble into a toroidal vortex ring. Adiabatic compression of the aged electron population causes it to be energized and to emit low-surface brightness and steep-spectrum radio emission. The large infall velocity of NGC 1265 and the low Faraday rotation measure values and variance of the jet strongly argue that this transformation was due to the accretion shock onto Perseus situated roughly at R_200. Estimating the volume change of the radio bubble enables inferring a shock Mach number of M = 4.2_{-1.2}^{+0.8}, a density jump of 3.4_{-0.4}^{+0.2}, a temperature jump of 6.3_{-2.7}^{+2.5}, and a pressure jump of 21.5 +/- 10.5 while allowing for uncertainties in the equation of state of the radio plasma and volume of the torus. Extrapolating X-ray profiles, we obtain upper limits on the gas temperature and density in the infalling warm-hot intergalactic medium of kT < 0.4 keV and n < 5e-5 / cm^3. The orientation of the ellipsoidally shaped radio torus in combination with the direction of the galaxy's head and tail in the plane of the sky is impossible to reconcile with projection effects. Instead, this argues for post-shock shear flows that have been caused by curvature in the shock surface with a characteristic radius of 850 kpc. The energy density of the shear flow corresponds to a turbulent-to-thermal energy density of 14%. The shock-injected vorticity might be important in generating and amplifying magnetic fields in galaxy clusters. Future LOFAR observations of head-tail galaxies can be complementary probes of accretion shocks onto galaxy clusters.Comment: 14 pages, 4 figures, ApJ, in print; v3: typos corrected to match the published version; v2: improved presentation, added 2D numerical simulations and exact solution to the 1D Riemann problem of a shock overrunning a spherical bubble that gets transformed into a vortex rin

    Scattering in the vicinity of relativistic jets: a method for constraining jet parameters

    Full text link
    Relativistic jets of radio loud active galactic nuclei (AGN) produce highly directed, intense beams of radiation. A fraction of this beamed radiation scatters on the thermal plasma generally surrounding an AGN. The morphology of the scattered emission can thus provide constraints on the physical properties of the jet. We present a model to study the feasibility of constraining the parameters of a jet, especially its inclination angle and bulk Lorentz factor in this way. We apply our model to the well studied jet of M87 and the surrounding diffuse gas and find that the observational limits of the surface brightness measured in the region of the putative counterjet provide the tightest constraints on the jet parameters consistent with constraints derived by other methods. We briefly discuss the applicability of our model to other sources exhibiting relativistic motionsComment: 17 pages, 15 figures, to appear in A&A, 420, 33 (2004

    The 74MHz System on the Very Large Array

    Full text link
    The Naval Research Laboratory and the National Radio Astronomy Observatory completed implementation of a low frequency capability on the VLA at 73.8 MHz in 1998. This frequency band offers unprecedented sensitivity (~25 mJy/beam) and resolution (~25 arcsec) for low-frequency observations. We review the hardware, the calibration and imaging strategies, comparing them to those at higher frequencies, including aspects of interference excision and wide-field imaging. Ionospheric phase fluctuations pose the major difficulty in calibrating the array. Over restricted fields of view or at times of extremely quiescent ionospheric ``weather'', an angle-invariant calibration strategy can be used. In this approach a single phase correction is devised for each antenna, typically via self-calibration. Over larger fields of view or at times of more normal ionospheric ``weather'' when the ionospheric isoplanatic patch size is smaller than the field of view, we adopt a field-based strategy in which the phase correction depends upon location within the field of view. This second calibration strategy was implemented by modeling the ionosphere above the array using Zernike polynomials. Images of 3C sources of moderate strength are provided as examples of routine, angle-invariant calibration and imaging. Flux density measurements indicate that the 74 MHz flux scale at the VLA is stable to a few percent, and tied to the Baars et al. value of Cygnus A at the 5 percent level. We also present an example of a wide-field image, devoid of bright objects and containing hundreds of weaker sources, constructed from the field-based calibration. We close with a summary of lessons the 74 MHz system offers as a model for new and developing low-frequency telescopes. (Abridged)Comment: 73 pages, 46 jpeg figures, to appear in ApJ
    • 

    corecore