33 research outputs found

    A new Early Cretaceous relative of Gnetales: Siphonospermum simplex gen. et sp. nov. from the Yixian Formation of Northeast China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge on fossil and evolutionary history of the Gnetales has expanded rapidly; <it>Ephedra </it>and ephedroids as well as the <it>Gnetum-Welwitschia </it>clade are now well documented in the Early Cretaceous. However, hypotheses on evolutionary relationships among living and fossil species are hampered by restricted knowledge of morphological variation in living groups and recent studies indicate that gnetalean diversity and character evolution may be more complex than previously assumed and involve additional extinct groups (Bennettitales, Erdtmanithecales and unassigned fossil taxa).</p> <p>Results</p> <p>Here we describe a new fossil related to Gnetales, <it>Siphonospermum simplex </it>from the Early Cretaceous Yixian Formation, an impression/compression of a reproductive shoot. The slender main axis bears one pair of opposite and linear leaves with primary parallel venation. The reproductive units are ovoid, without supporting bracts and borne on one median and two lateral branches. The most conspicuous feature of the fossil is the long, thread-like micropylar tube formed by the integument. Each ovule is surrounded by two different layers representing one or two seed envelopes; an inner sclerenchymatous layer and an outer probably parenchymatous layer.</p> <p>Conclusions</p> <p>The vegetative and reproductive features of <it>Siphonospermum simplex </it>exclude a relationship to any other group than the Gnetales. A combination of opposite phyllotaxis, linear leaves and ovules surrounded by seed envelope(s) and with a long exposed micropylar tube are known only for extant and extinct Gnetales. <it>Siphonospermum simplex </it>constitutes a new lineage within the Gnetales. Its morphology cannot be directly linked to any previously known plant, but the organization of the reproductive units indicates that it belongs to the <it>Gnetum-Welwitschia </it>clade. Based on the absence of cone bracts and the inferred histology of the seed envelope(s) it could be related to <it>Gnetum</it>, however, there are also affinities with the ephedran lineage, some of which are likely plesiomorphic features, others perhaps not. Phylogeny and character evolution in the Bennettitales, Erdtmanithecales and Gnetales are currently only partly understood and under debate; the exact systematic position of <it>Siphonospermum simplex</it>, i.e., its position within the Gnetales, cannot be resolved with certainty.</p

    Deep divergences in the coffee family and the systematic position of Acranthera

    Get PDF
    Despite extensive efforts, there are unresolved questions on evolutionary relationships in the angiosperm family Rubiaceae. Here, information from six loci and 149 Rubiaceae taxa provide new insights. Acranthera and Coptosapelta are strongly supported as sisters. Pollen grains of Acranthera possess several features common in Rubiaceae, but amongst potential similarities with the unusual grains of Coptosapelta are the nature of the apertures and the structure of the sexine. Luculia, Acranthera and Coptosapelta are excluded from the three subfamilies Ixoroideae, Cinchonoideae and Rubioideae. Sipaneeae and Condamineeae form a clade, sister to remaining Ixoroideae. Rondeletieae and Guettardeae are sisters to remaining Cinchonoideae. Colletoecema is sister to remaining Rubioideae, followed by the Urophylleae-Ophiorrhizeae clade. Nuclear ITS provided structured information at all phylogenetic levels, but the main gain from adding nrITS was the increased resolution. Average support values also increased but were generally high also without nrITS and the increase was not statistically significan

    Gymnosperms on the EDGE

    Get PDF
    Driven by limited resources and a sense of urgency, the prioritization of species for conservation has been a persistent concern in conservation science. Gymnosperms (comprising ginkgo, conifers, cycads, and gnetophytes) are one of the most threatened groups of living organisms, with 40% of the species at high risk of extinction, about twice as many as the most recent estimates for all plants (i.e. 21.4%). This high proportion of species facing extinction highlights the urgent action required to secure their future through an objective prioritization approach. The Evolutionary Distinct and Globally Endangered (EDGE) method rapidly ranks species based on their evolutionary distinctiveness and the extinction risks they face. EDGE is applied to gymnosperms using a phylogenetic tree comprising DNA sequence data for 85% of gymnosperm species (923 out of 1090 species), to which the 167 missing species were added, and IUCN Red List assessments available for 92% of species. The effect of different extinction probability transformations and the handling of IUCN data deficient species on the resulting rankings is investigated. Although top entries in our ranking comprise species that were expected to score well (e.g. Wollemia nobilis, Ginkgo biloba), many were unexpected (e.g. Araucaria araucana). These results highlight the necessity of using approaches that integrate evolutionary information in conservation science

    Phylogenetic relationships of the ‘Briza complex’ to other members of the subfamily Pooideae (Poaceae)

    No full text
    Background and aims – The species of the ' Briza complex' (Pooideae, Poaceae) are distributed in South America and Eurasia. They are relatively well-studied morphologically and have a complex taxonomic history, but only a few phylogenetic studies have been conducted using molecular data. Monophyly of the complex, which is based on presence of 'brizoid' spikelets, has not been questioned and sampling strategies in previous studies have prevented assessments thereof.Methods – We investigate phylogeny and node ages in the Briza complex and test monophyly of the group using nuclear and chloroplast data. Extensive sampling from the Briza complex and putatively related species in the subfamily Pooideae is employed.Key results – Despite morphological similarity among species, the Briza complex is polyphyletic. Members were found in three different clades, showing the South American species, the Eurasian species and Briza humilis to be distinct groups. The South American and the Eurasian clades originated about 11 and 13 million years ago, respectively. Briza humilis diverged from Phleum (or a related genus) about 10 million years ago, whereas its crown clade is from the Pliocene-Pleistocene border. The almost simultaneous origins of these clades in the mid-Miocene coincide with temporal estimates of major diversification in grasses and formation of grassland habitats.Conclusions – Based on our results, we support the names Chascolytrum for the South American clade and Briza for the Eurasian clade. For the Briza humilis clade, we propose the name Brizochloa. The parallel evolution of (seemingly) similar 'brizoid' spikelets in the Pooideae is surprising; however, studies have shown that floral morphology can alter dramatically by one-step mutations, causing evolutionarily distantly related species to have similar appearance. Our findings may hopefully inspire new morphological investigations of the species of the former Briza complex, as well as other poorly studied and potentially polyphyletic genera, such as Deschampsia and Echinopogon

    Phylogenetic relationships of the 'Briza complex' to other members of the subfamily Pooideae (Poaceae)

    No full text
    Background and aims – The species of the ' Briza complex' (Pooideae, Poaceae) are distributed in South America and Eurasia. They are relatively well-studied morphologically and have a complex taxonomic history, but only a few phylogenetic studies have been conducted using molecular data. Monophyly of the complex, which is based on presence of 'brizoid' spikelets, has not been questioned and sampling strategies in previous studies have prevented assessments thereof.Methods – We investigate phylogeny and node ages in the Briza complex and test monophyly of the group using nuclear and chloroplast data. Extensive sampling from the Briza complex and putatively related species in the subfamily Pooideae is employed.Key results – Despite morphological similarity among species, the Briza complex is polyphyletic. Members were found in three different clades, showing the South American species, the Eurasian species and Briza humilis to be distinct groups. The South American and the Eurasian clades originated about 11 and 13 million years ago, respectively. Briza humilis diverged from Phleum (or a related genus) about 10 million years ago, whereas its crown clade is from the Pliocene-Pleistocene border. The almost simultaneous origins of these clades in the mid-Miocene coincide with temporal estimates of major diversification in grasses and formation of grassland habitats.Conclusions – Based on our results, we support the names Chascolytrum for the South American clade and Briza for the Eurasian clade. For the Briza humilis clade, we propose the name Brizochloa. The parallel evolution of (seemingly) similar 'brizoid' spikelets in the Pooideae is surprising; however, studies have shown that floral morphology can alter dramatically by one-step mutations, causing evolutionarily distantly related species to have similar appearance. Our findings may hopefully inspire new morphological investigations of the species of the former Briza complex, as well as other poorly studied and potentially polyphyletic genera, such as Deschampsia and Echinopogon

    Reproductive morphology in the Gnetum cuspidatum group (Gnetales) and its implications for pollination biology in the Gnetales

    No full text
    Background and aims – The Gnetales include the extant genera Gnetum, Ephedra and Welwitschia . They are usually functionally dioecious, but male cones often have sterile (but pollination drop-producing) ovules in addition to male units. There are, however, exceptions, i.e. most species of Ephedra and African species of Gnetum . Furthermore, the literature contains conflicting information on the Asian Gnetum cuspidatum . One study states that sterile ovules are present in this species; another that they are absent. The latter also claims that male cones secrete nectar instead, which is interesting because nectar has only been suggested to be present in four gymnosperm species. Here we aim to elucidate whether or not sterile ovules are present in male cones of G. cuspidatum and related taxa, evaluate evidence for nectar being present in gymnosperms and discuss implications for pollination biology. Methods – Male cones from relevant taxa were examined using a dissecting microscope and scanning electron microscopy. Key results – Sterile ovules are present in G. cuspidatum and the related G. macrostachyum, G. microcarpum, G. diminutum and G. loerzingii, but they are minute, hidden among hairs, and easily overlooked. No indications of nectar or nectaries were found and their presence in Asian species of Gnetum is questioned. Conclusions – Insect pollination is probably ancestral in the Gnetales. Like most species of Gnetum, members of the G. cuspidatum group have sterile ovules in male cones, and they can thus attract pollinators to both male and female plants using sweet pollination drops. Although it is possible that these species, in addition, produce extraovular reward for pollinators, we find no such evidence. Instead, it seems plausible that pollination drops have been mistaken for (extraovular) nectar. However, African species of Gnetum have unisexual male cones. Have they developed another means of pollinator reward in male plants or are they wind-pollinated as are their ephedran analogues

    Cratonia cotyledon gen. et sp. nov: a unique Cretaceous seedling related to Welwitschia.

    No full text
    The fossil history of most extant seed plant groups is relatively well documented. Cycads, conifers and Ginkgo all have an extensive fossil record, and the understanding of early angiosperm diversity is increasing. The Gnetales are an exception. Few macrofossils have been described, and character evolution within the group is poorly known. Cratonia cotyledon is a new gnetalean fossil from the Early Cretaceous Crato Formation of Brazil. This well-preserved seedling consists of two cotyledons, a feeder and a root. The leaf surface shows polygonal epidermal cells and apparently paracytic or actinocytic stomata. The cotyledons have a very specific venation pattern, shared only by Cratonia and Welwitschia, with parallel primary veins and secondary veins fusing to form inverted 'Y's between the main veins. Based on the 'Y'-venation and the presence of a feeder, we assign Cratonia to the Gnetum-Welwitschia clade. Fossil seedlings are unusual and this complete specimen with unambiguously welwitschioid characters is spectacular. Cratonia indicates that the evolutionary split between Gnetum and Welwitschia had occurred in the Early Cretaceous. Further, the close relationship between a West African plant and an east South American Early Cretaceous fossil is consistent with a major geological event: the rifting of the Gondwana continent

    Phylogenetic relationships in the order Ericales s.l. : analyses of molecular data from five genes from the plastid and mitochondrial genomes

    No full text
    Phylogenetic interrelationships in the enlarged order Ericales were investigated by jackknife analysis of a combination of DNA sequences from the plastid genes rbcL, ndhF, atpB, and the mitochondrial genes atp1 and matR. Several well‐supported groups were identified, but neither a combination of all gene sequences nor any one alone fully resolved the relationships between all major clades in Ericales. All investigated families except Theaceae were found to be monophyletic. Four families, Marcgraviaceae, Balsaminaceae, Pellicieraceae, and Tetrameristaceae form a monophyletic group that is the sister of the remaining families. On the next higher level, Fouquieriaceae and Polemoniaceae form a clade that is sister to the majority of families that form a group with eight supported clades between which the interrelationships are unresolved: Theaceae‐Ternstroemioideae with Ficalhoa, Sladenia, and Pentaphylacaceae; Theaceae‐Theoideae; Ebenaceae and Lissocarpaceae; Symplocaceae; Maesaceae, Theophrastaceae, Primulaceae, and Myrsinaceae; Styracaceae and Diapensiaceae; Lecythidaceae and Sapotaceae; Actinidiaceae, Roridulaceae, Sarraceniaceae, Clethraceae, Cyrillaceae, and Ericaceae

    Phylogenomics and topological conflicts in the tribe Anthospermeae (Rubiaceae)

    No full text
    Genome skimming (shallow whole-genome sequencing) offers time-and cost-efficient production of large amounts of DNA data that can be used to address unsolved evolutionary questions. Here we address phylogenetic relationships and topological incongruence in the tribe Anthospermeae (Rubiaceae), using phylogenomic data from the mitochondrion, the nuclear ribosomal cistron, and the plastome. All three genomic compartments resolve relationships in the Anthospermeae; the tribe is monophyletic and consists of three major subclades. Carpacoce Sond. is sister to the remaining clade, which comprises an African subclade and a Pacific subclade. Most results, from all three genomic compartments, are statistically well supported; however, not fully consistent. Intergenomic topological incongruence is most notable in the Pacific subclade but present also in the African subclade. Hybridization and introgression followed by organelle capture may explain these conflicts but other processes, such as incomplete lineage sorting (ILS), can yield similar patterns and cannot be ruled out based on the results. Whereas the null hypothesis of congruence among all sequenced loci in the individual genomes could not be rejected for nuclear and mitochondrial data, it was rejected for plastid data. Phylogenetic analyses of three subsets of plastid loci identified using the hierarchical likelihood ratio test demonstrated statistically supported intragenomic topological incongruence. Given that plastid genes are thought to be fully linked, this result is surprising and may suggest modeling or sampling error. However, biological processes such as biparental inheritance and inter-plastome recombination have been reported and may be responsible for the observed intragenomic incongruence. Mitochondrial insertions into the plastome are rarely documented in angiosperms. Our results indicate that a mitochondrial insertion event in the plastid trnSGGA – rps4 IGS region occurred in the common ancestor of the Pacific clade of Anthospermeae. Exclusion/inclusion of this locus in phylogenetic analyses had a strong impact on topological results in the Pacific clade
    corecore