618 research outputs found

    Resurrection of a Bull by Cloning from Organs Frozen without Cryoprotectant in a −80°C Freezer for a Decade

    Get PDF
    Frozen animal tissues without cryoprotectant have been thought to be inappropriate for use as a nuclear donor for somatic cell nuclear transfer (SCNT). We report the cloning of a bull using cells retrieved from testicles that had been taken from a dead animal and frozen without cryoprotectant in a −80°C freezer for 10 years. We obtained live cells from defrosted pieces of the spermatic cords of frozen testicles. The cells proliferated actively in culture and were apparently normal. We transferred 16 SCNT embryos from these cells into 16 synchronized recipient animals. We obtained five pregnancies and four cloned calves developed to term. Our results indicate that complete genome sets are maintained in mammalian organs even after long-term frozen-storage without cryoprotectant, and that live clones can be produced from the recovered cells

    The Transformation of Teaching Habits in Relation to the Introduction of Grading and National Testing in Science Education in Sweden

    Get PDF
    In Sweden, a new curriculum and new methods of assessment (grading of students and national tests) in science education were introduced in grade 6 in 2012/2013. We have investigated what implications these reforms have for teachers’ teaching and assessment practices in order to explore the question of how teachers transform their teaching habits in relation to policy reforms. Interviews with 16 teachers teaching science in grade 6 (Y6), over 3 years after the reforms were introduced, were analysed. Building on the ideas of John Dewey, we consider teachers’ talk about their everyday practice as expressions of their habits of teaching. Habits of teaching are related both to individual experiences as well as institutional traditions in and about teaching. A categorisation of educational philosophies was used to teachers’ habits of teaching to a collective level and to show how habits can be transformed and developed over time in specific sociocultural contexts. The teachers were categorised as using essentialist and/or progressivist educational philosophy. In the responses to the introduction of grading and national testing, the teachers took three approaches: Their habits being reinforced, revised or unchanged in relation to the reforms. Although the responses were different, a striking similarity was that all teachers justified their responses with wanting to do what is best for students. However, how to show care for students differed, from delivering scientific knowledge in alignment with an essentialist educational philosophy, to preparing students to do well on tests, to supporting their development as individuals, which is in alignment with a progressivist educational philosophy

    Structural and biochemical characterization of the exopolysaccharide deacetylase Agd3 required for Aspergillus fumigatus biofilm formation

    Get PDF
    The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Deletion of a gene encoding a putative deacetylase, Agd3, leads to defects in GAG deacetylation, biofilm formation, and virulence. Here, we show that Agd3 deacetylates GAG in a metal-dependent manner, and is the founding member of carbohydrate esterase family CE18. The active site is formed by four catalytic motifs that are essential for activity. The structure of Agd3 includes an elongated substrate-binding cleft formed by a carbohydrate binding module (CBM) that is the founding member of CBM family 87. Agd3 homologues are encoded in previously unidentified putative bacterial exopolysaccharide biosynthetic operons and in other fungal genomes. The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Here, the authors study an A. fumigatus enzyme that deacetylates GAG in a metal-dependent manner and constitutes a founding member of a new carbohydrate esterase family.Bio-organic Synthesi

    Bioinformatics for the NuGO proof of principle study: analysis of gene expression in muscle of ApoE3*Leiden mice on a high-fat diet using PathVisio

    Get PDF
    Insulin resistance is a characteristic of type-2 diabetes and its development is associated with an increased fat consumption. Muscle is one of the tissues that becomes insulin resistant after high fat (HF) feeding. The aim of the present study is to identify processes involved in the development of HF-induced insulin resistance in muscle of ApOE3*Leiden mice by using microarrays. These mice are known to become insulin resistant on a HF diet. Differential gene expression was measured in muscle using the Affymetrix mouse plus 2.0 array. To get more insight in the processes, affected pathway analysis was performed with a new tool, PathVisio. PathVisio is a pathway editor customized with plug-ins (1) to visualize microarray data on pathways and (2) to perform statistical analysis to select pathways of interest. The present study demonstrated that with pathway analysis, using PathVisio, a large variety of processes can be investigated. The significantly regulated genes in muscle of ApOE3*Leiden mice after 12 weeks of HF feeding were involved in several biological pathways including fatty acid beta oxidation, fatty acid biosynthesis, insulin signaling, oxidative stress and inflammation

    GLUT4 and UBC9 Protein Expression Is Reduced in Muscle from Type 2 Diabetic Patients with Severe Insulin Resistance

    Get PDF
    Subgroups of patients with type 2 diabetes mellitus demand large insulin doses to maintain euglycemia. These patients are characterized by severe skeletal muscle insulin resistance and the underlying pathology remains unclear. The purpose of this study was to examine protein expression of the principal glucose transporter, GLUT4, and associated proteins in skeletal muscle from type 2 diabetic patients characterized by severe insulin resistance.Seven type 2 diabetic patients with severe insulin resistance (mean insulin dose 195 IU/day) were compared with seven age matched type 2 diabetic patients who did not require insulin treatment, and with an age matched healthy control group. Protein expression of GLUT4 and associated proteins was assessed in muscle and fat biopsies using standard western blotting techniques.GLUT4 protein expression was significantly reduced by ∼30 pct in skeletal muscle tissue from severely insulin resistant type 2 diabetic subjects, compared with both healthy controls and type 2 diabetic subjects that did not require insulin treatment. In fat tissue, GLUT4 protein expression was reduced in both diabetic groups. In skeletal muscle, the reduced GLUT4 expression in severe insulin resistance was associated with decreased ubiquitin-conjugating enzyme 9 (UBC9) expression while expression of GLUT1, TBC1D1 and AS160 was not significantly different among type 2 diabetic patients and matched controls.Type 2 diabetic patients with severe insulin resistance have reduced expression of GLUT4 in skeletal muscle compared to patients treated with oral antidiabetic drugs alone. GLUT4 protein levels may therefore play a role in the pathology behind type 2 diabetes mellitus among subgroups of patients, and this may explain the heterogeneous response to insulin treatment. This new finding contributes to the understanding of the underlying mechanisms for the development of extreme insulin resistance

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201

    Presence of clone-specific markers at birth in children with acute lymphoblastic leukaemia

    Get PDF
    Recent studies have suggested that development of childhood acute lymphoblastic leukaemia may often be initiated in utero. To provide further evidence of an prenatal origin of childhood leukaemia, we conducted a molecular biological investigation of nine children with B-precursor acute lymphoblastic leukaemia carrying the chromosomal translocation t(12;21), the most common subtype of all childhood acute lymphoblastic leukaemia. Specifically, for each child we identified the non-constitutive chromosomal sequences made up by the t(12;21) fusion gene. From these, leukaemia clone-specific DNA primers were constructed and applied in nested polymerase chain reaction analyses of DNA extracted from the patients' Guthrie cards obtained at birth. Leukaemia clone-specific fusion gene regions were demonstrated in Guthrie card DNA of three patients, age 2 years 11 months, 3 years 4 months, and 5 years 8 months at leukaemia diagnosis. Our findings are consistent with previous observations, and thus provide further evidence that the development of t(12;21) B-precursor acute lymphoblastic leukaemia may be initiated in utero. Review of the current literature moreover indicates that age at leukaemia may be inversely correlated with the burden of cells with leukaemia clonal markers, i.e. leukaemia predisposed cells at birth, and that certain types of childhood acute lymphoblastic leukaemia develop as a multiple step process involving both pre- and postnatal genetic events
    corecore