9 research outputs found

    Thermodynamic Derivation of the Tsallis and R\'enyi Entropy Formulas and the Temperature of Quark-Gluon Plasma

    Get PDF
    We derive Tsallis entropy, Sq, from universal thermostat independence and obtain the functional form of the corresponding generalized entropy-probability relation. Our result for finite thermostats interprets thermodynamically the subsystem temperature, T1, and the index q in terms of the temperature, T, entropy, S, and heat capacity, C of the reservoir as T1 = T exp(-S/C) and q = 1 - 1/C. In the infinite C limit, irrespective to the value of S, the Boltzmann-Gibbs approach is fully recovered. We apply this framework for the experimental determination of the original temperature of a finite thermostat, T, from the analysis of hadron spectra produced in high energy collisions, by analyzing frequently considered simple models of the quark-gluon plasma.Comment: 4 pages 1 Figure PRL style, revised presentatio

    Early Pliocene fish remains from Arctic Canada support a pre-Pleistocene dispersal of percids (Teleostei: Perciformes)

    No full text
    Percid remains from Pliocene deposits on Ellesmere Island, Arctic Canada, are identified as a species of Sander, similar to the walleye and sauger of North America and the pike-perch of Europe and western Asia. They are named as a new species, Sander teneri. These remains are the most northerly percid elements found to date and suggest the palaeoenvironment was significantly warmer in the Pliocene than it is currently. The fossil remains show the presence in North America of the family Percidae as well as the genus Sander prior to the Pleistocene, indicating a previously proposed Pleistocene immigration from Europe or Asia can be discounted. These fossils contradict an earlier hypothesis that percids, in particular Sander, crossed from Eurasia to North America in the Pleistocene; instead, the fossils show percids were already in the area by the Pliocene

    CMS physics technical design report: Addendum on high density QCD with heavy ions

    Get PDF
    This report presents the capabilities of the CMS experiment to explore the rich heavy-ion physics programme offered by the CERN Large Hadron Collider (LHC). The collisions of lead nuclei at energies ,will probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). This report covers in detail the potential of CMS to carry out a series of representative Pb-Pb measurements. These include "bulk" observables, (charged hadron multiplicity, low pT inclusive hadron identified spectra and elliptic flow) which provide information on the collective properties of the system, as well as perturbative probes such as quarkonia, heavy-quarks, jets and high pT hadrons which yield "tomographic" information of the hottest and densest phases of the reaction.0info:eu-repo/semantics/publishe
    corecore