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Abstract. We derive entropy formulas for finite reservoir systems, Sq, from universal thermostat indepen-
dence and obtain the functional form of the corresponding generalized entropy-probability relation. Our
result interprets thermodynamically the subsystem temperature, T1, and the index q in terms of the tem-
perature, T , entropy, S, and heat capacity, C of the reservoir as T1 = T exp(−S/C) and q = 1−1/C. In the
infinite C limit, irrespective of the value of S, the Boltzmann-Gibbs approach is fully recovered. We apply
this framework for the experimental determination of the original temperature of a finite thermostat, T ,
from the analysis of hadron spectra produced in high-energy collisions, by analyzing frequently considered
simple models of the quark-gluon plasma.

1 Motivation

A nonlinear entropy formula has been suggested by Rényi
long ago and been applied to several areas in physics [1–
7]. Another formula, the Tsallis entropy, has more recently
been promoted as the keystone for a generalized thermo-
dynamics, treating correlated physical systems [8–11] with
intrinsic, either statistical or dynamical fluctuations [12,
13]. A respectable amount of papers applying this idea
to one or the other area in physics appeared [14–19].
Since from this entropy the canonical energy distribution
is power law tailed in place of the Boltzmann-Gibbs expo-
nential, numerous high-energy distributions have been fit-
ted using the Tsallis formula [12,20–28]. Its independence
from the thermostat and the thermodynamical foundation
behind the use of such a formula are interesting questions.
This is even true for such a simple system like the ideal gas
in a generalized form [29], which can also provide power
law distribution [30–33]. It has been recently proven that
—considering in the traditional way— the thermodynami-
cal and conditional probability of an ideal gas and its part,
respectively, provide Rényi and Tsallis q-entropy formu-
las [34].

In our earlier works we investigated some general
mathematical properties of alternative entropy formulas
via their pairwise composition rules, and established that
a scaled repetition of an arbitrary composition rule leads
to an associative asymptotic composition rule of large sub-
systems [35]. All such rules are uniquely defined by a strict
monotonic function, their formal logarithm denoted by L
(see eq. (3)). Recently we have also observed that —in

a e-mail: Barnafoldi.Gergely@wigner.mta.hu

connection to the zero-th law of thermodynamics— the
factorizability condition on the common entropy maxi-
mum [36] allows only for such rules [37]. We seek in this
paper for the thermodynamical meaning of the q param-
eter generalizing the classical entropy formula, valid for
q = 1. Some q �= 1 parameter were calculated theoreti-
cally [38–40].

2 Classical thermodynamical and statistical
fundaments

The total entropy is expressed by the Planck formula,

S [Pi] := lim
N→∞

Ω

N
= −

∑

i

Pi ln Pi, (1)

with Ω = lnN !/
r∏

i=1

Ni!, considering altogether N states in

r classes and in each class Ni indistinguishable states. The
Boltzmann constant is set to one (kB = 1). The probabil-
ity to find our system in a given class (macrostate) is ap-
proaching the ratio Pi = Ni/N in the large N limit. This
entropy is Boltzmann’s permutation measure per state
in the large number of states limit. Conventional atomic
statistical physics is based on the enormous largeness of
N . Modern nanotechnology and attoscale high-energy re-
search, on the other hand, have reached a point where
N can be rather small in experiments. Furthermore the
conjecture that the largeness of N would suffice to de-
rive the classical formula holds only if the assumptions,
most prominently the statistical independence assump-
tion, hold [11].
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In this paper we found the thermodynamical interpre-
tation of the entropy formula and its parameters on the
analysis of the two-body thermodynamics of a single ob-
served subsystem and a reservoir. The binary system will
be regarded in its maximal probability state, with the in-
dividual contributions Si = − ln Pi. The knowledge gained
from this analysis will be generalized by a Gibbs ensemble,
treated as the extension from a sum of two to a weighted
sum of many. In this way a result of the two-body analysis
in the form L(S1) = L(− ln P1) will generalize the classical
formula S = −

∑
i Pi ln Pi to

L(S) =
∑

i

PiL(− ln Pi). (2)

This L-additive version of the additive entropy is our start-
ing point.

3 Derivation

We found the thermodynamical interpretation of the en-
tropy formula and its parameters on the analysis of the
two-body thermodynamics of a single observed subsystem
and a reservoir. For finite systems the microcanonical ap-
proach is the key to the physical interpretation. In the
classical treatment subleading terms in a finite-energy ex-
pansion of the microcanonical entropy maximum are often
ignored, the reservoir is treated as constant in the canon-
ical limit. A notable exception is the analysis of statisti-
cal fluctuations and their scaling in the thermodynamical
limit [41–47]. We aim to compensate the correlation be-
tween subsystem and reservoir induced by the conserva-
tion of total energy by maximizing a monotonic function
of the Boltzmann-Gibbs entropy, L(S). We seek for that
very function, L, which counteracts finite-size effects be-
yond the usual linear term, −βEi, in the Taylor expansion
of the L(S) = max principle.

We discuss now the thermal equilibrium of two sys-
tems, one with energy E1 (subsystem) and the other with
energy E − E1 (reservoir), while their respective entropy
contributions are combined by the general rule satisfying

L(S12) = L(S1) + L(S2). (3)

Here we do not assume that the deviation from the simple
additive rule be small. For the sake of simplicity we con-
sider here homogeneous rules, relevant for the cases when
subsystem and reservoir are composed from the same mat-
ter (for details see ref. [37]). The microcanonical condition
for a maximal entropy state then defines the thermody-
namical inverse temperature, requiring

L (S(E1)) + L (S(E − E1)) = max. (4)

Varying the subsystem energy, E1, while keeping the total
energy E fixed, we describe the thermal contact between
subsystem and reservoir. This means that the derivative
with respect to E1 of the above expression (4) vanishes.

Owing to the two E1-dependent contributions, it is equiv-
alent to the statement that

β1 = L′ (S(E1)) · S′(E1)
= L′ (S(E − E1)) · S′(E − E1). (5)

This equality, when taken in the E � E1 limit, usu-
ally defines the canonical approach. Now we would like
to take into account effects to higher order in E1/E,
and require that their leading term vanishes on the r.h.s.
The reservoir’s entropy on the r.h.s. is Taylor-expanded:
S(E − E1) = S(E) − S′(E) · E1 + . . . Collecting the coef-
ficients of E1 we arrive at

β1 = L′ (S(E)) · S′(E)
−

[
S′(E)2L′′(S(E)) + S′′(E)L′(S(E))

]
E1 + . . . (6)

Here the first term on the r.h.s. is the familiar canonical
(E1-independent) Lagrange multiplier,

β = L′ (S(E)) · S′(E) = L′(S) · 1
T

, (7)

constituting the β1 = β relation. Our key addition to the
usual treatment is to require that the coefficient of the
linear term in eq. (6) vanishes: This is a constraint for the
L(S) function in general. Obviously, without considering
L(S), the whole coefficient consisted only of S′′(E) as in
the traditional approach, and nothing further could be
done. We obtain the following condition:

L′′(S)
L′(S)

= − S′′(E)
S′(E)2

. (8)

Since the l.h.s. of eq. (8) is a function of S, while the
r.h.s. is a function of E, the l.h.s. must be treated as an
S-independent constant by solving eq. (8) for L(S), if we
want it to hold for arbitrary S(E). This Universal Ther-
mostat Independence (UTI) reads

L′′(S)
L′(S)

= a. (9)

The natural requirement that L(S) ≈ S for small S, a
specific aspect of the third law of thermodynamics leads
to the particular conditions with L′(0) = 1 and L(0) = 0.
The solution of eq. (9) becomes

L(S) =
eaS − 1

a
. (10)

The derivatives of the S(E) equation of state do have
physical meaning: S′(E) = 1/T and S′′(E) = −1/CT 2

are related to the traditional temperature and heat ca-
pacity of the reservoir. By using this we obtain

a = 1/C. (11)

The non-additivity parameter of the entropy composi-
tion rule, a, defined by eq. (3) is simply the inverse heat
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capacity of the reservoir1. For C → ∞ one has a → 0 and
L(S) → S, so the Boltzmann-Gibbs formula is included
by this limit. A connection between Tsallis entropy and
constant heat capacity of the reservoir has been observed
years ago [30,48]. Our result shows the background for this
observation. The philosophy behind our approach is first
to decide on the entropy composition formula by choos-
ing L(S) generally and then to solve the maximization
problem in terms of subsystem energies and correspond-
ing probabilities.

The knowledge gained from this analysis now will be
generalized. Similarly to a Gibbs ensemble, we extend a
sum of two to a weighted sum of many. Based on the
two-body analysis in the form L(S1), the result general-
izes the classical entropy formula, SBG = −

∑
i Pi ln Pi, to

eq. (2). This L-additive form of the generally non-additive
entropy leads to the Tsallis entropy formula when apply-
ing eq. (10). In this way one obtains

L (S(E1)) − βE1 =
1
a

(
eaS(E1) − 1

)
− βE1 = max. (12)

In this equation the coefficient of the second-order correc-
tion, O

(
E2

1/E2
)

vanishes for a = 1/C(E). By this we are
led to the following entropy expression:

L (S(E1)) = L (− ln P1) =
1
a

(
P−a

1 − 1
)
. (13)

Our result applied to a Gibbs ensemble with the relative
occurrence frequency Pi of states with energy Ei, hence,
reads

∑

i

PiL(− ln Pi) − β
∑

i

PiEi − α
∑

i

Pi = max. (14)

Substituting eq. (13) we finally arrive at

1
a

∑

i

(
P 1−a

i − Pi

)
− β

∑

i

PiEi − α
∑

i

Pi = max. (15)

With the widespread notation q = 1 − a one obtains the
Tsallis entropy formula,

STsallis := L(S) =
1

q − 1

∑

i

(Pi − P q
i ) . (16)

It is suggestive to consider its inverse function according
to eq. (2). This delivers the Rényi entropy,

SRényi := S =
1

1 − q
ln

∑

i

P q
i . (17)

Now the parameters β and a, defined in eqs. (7) and (11),
are set by the physics of the finite-energy reservoir. The
sign of the heat capacity, C, determines whether q is
smaller or larger than one. It may possibly carry an inter-
esting message for the description of gravitating systems,
with C < 0.

1 The meaning of non-additivity parameter, a, is given in
ref. [35], however this can be converted to the so-called Tsallis
q parameter by a = 1 − q.

We proceed by noting that, maximizing STsallis with
respect to the Pi weights of system instances with energy
Ei, one obtains the canonical cut power law distribution
of energies

Pi =
(

Z1−q + (1 − q)
β

q
Ei

) 1
q−1

. (18)

Using eqs. (7), (10), and (11) we rewrite this in the equiv-
alent form,

Pi =
1
Z

(
1 +

Z−1/C eS/C

C − 1
Ei

T

)−C

, (19)

expressing the energy distribution in terms of the tem-
perature, T , entropy, S and heat capacity, C of the ideal
reservoir. The partition sum Z, obtained from normaliza-
tion, is related to the Tsallis entropy, L(S1), and energy,
E1, of the subsystem via its deformed logarithm,

lnq Z := C
(
Z1/C − 1

)
= L (S1) −

1
1 − 1/C

βE1. (20)

In the infinite heat capacity limit, irrespective of the value
of S, formula (19) recovers the exponential distribution.
The inverse logarithmic slope of the energy distribution,
derived from it, is linear,

Tslope(Ei) =
(
− d

dEi
ln Pi

)−1

= T0 + Ei/C, (21)

with T0 = T e−S/CZ1/C(1− 1/C). One concludes that the
generalized entropy formula leads to a cut power law en-
ergy distribution, based on a finite heat capacity reservoir.
For an ideal gas, with equation of state

S(E) = C0,sys ln
(

1 +
E

C0,sysT0

)
, (22)

where the heat capacity of the isolated system is C0,sys.
The microcanonical energy distribution of the subsystem,

w(E1) ∝
eS(E−E1)

eS(E)
=

(
1 − E1

C0,resT0 + E

)C0,res

, (23)

approaches the canonical exponential with the reservoir’s
heat capacity, C0,res, approaching infinity,

P (E1) ∝
eL(S(E−E1))

eL(S(E))
= e−E1/T . (24)

Thus the assumption on L-additivity of the entropy, cf.
eq. (3), factorizes the microcanonical probability of an
ideal gas. Microcanonical distribution of non-quantum
ideal gases provide an example when UTI principle is not
an approximation, the correction is exact. Several further
aspects of this important example are developed in [34].
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Fig. 1. Extrapolated inverse slopes from RHIC AuAu data at
200 GeV (circles), LHC pp data at 900 GeV (boxes) and for dif-
ferent theoretical models of a QGP thermostat with tempera-
ture T = 167MeV (horizontal lines). Open symbols correspond
to mesons, filled symbols to baryons. The skew lines indicate
the respective valence quark assumptions: Tmeson

slope (pT = 0) =

T0 + mi/2C and T baryon
slope (pT = 0) = T0 + mi/3C, for the LHC

(upper two lines) and for RHIC (lower two lines).

4 Application

We demonstrate the usefulness of the above general results
on a particular thermal model to heavy-ion collisions. Ex-
perimental data from RHIC AuAu collision at 200GeV
deliver different Tslope’s extrapolated to pT = 0 for differ-
ent hadrons [20,49]. Considering that the energy at zero
momentum is the rest mass in c = 1 units, a linear trend
shows in the Tslope(mi) values, as can be seen in fig. 1.
The open circles correspond to mesons, the filled ones
to baryons in this figure. The steepness for mesons and
baryons seem to be in the proportion 2 : 3, suggesting a
quark coalescence hadronization picture, compatible with
the factorization assumption Phadron(E) = PK

i (E/K)
with K = 2 and K = 3 for mesons and baryons, respec-
tively. This scaling is acceptable and leads to

T hadron
slope (E) = T quark

slope (E/K), (25)

with the common T0 ≈ 48MeV intersect in the for-
mula (21). The valence quark matter heat capacity at
RHIC AuAu collision tends to be C ≈ 4.5. Similar trends
can be extracted from the analysis of fits to the ALICE
data in 900GeV pp collisions done in ref. [50]: the values
for the Tsallis slope parameters, T0, are much lower than
the canonical QCD phase transition temperature. Here we
replotted the tabulated values given in ref. [50], using the
coalescence quark assumption, denoting mesons by open
square boxes while baryons by filled boxes. We note, how-
ever, that these fits were performed in the very low pT

range (pT < 2.5GeV/c) only, therefore the uncertainty of
the fitted parameters is large.

In order to interpret this surprisingly low value for T0,
we have to consider physical models of a finite thermostat,
and calculate

T1 = 1/β1 = T e−S/C =
eS(E1)/C

1 + 0 E1
CT + α

E2
1

C2T 2 + . . .
, (26)

based on eq. (6). The coefficient “zero” is due to the UTI
principle eq. (8). The next order, α E2

1/C2T 2, is just in-
dicated. Here, lim

C→∞
T0 = T1, i.e. for small subsystems in

large reservoirs E1 � CT . The usual treatment of finite-
size effects, on the other hand, does not annul the co-
efficient of the term E1/CT . In this way with the UTI
principle we improve the approximation for finite C.

In order to model the reservoir physically, we study the
Stefan – Boltzmann formula supplemented with a bag con-
stant, E/V = σT 4 + B in a volume V . Since the pressure
is given by p = 1

3σT 4−B, the entropy is S = 4
3σV T 3. The

heat capacity is the derivative of the energy with respect
to the temperature,

C =
dE

dT
= 4σV T 3 +

(
σT 4 + B

) dV

dT
. (27)

At constant volume, V , this gives CV = 4σV T 3 = 3S and
T1V = T e−1/3. At constant pressure the temperature can-
not change in this model, so Cp = ∞ and T1P = T . Fur-
thermore, considering an adiabatically expanding reser-
voir, a more realistic scenario in high-energy experiments,
one deals with the heat capacity at constant entropy,
CS = 3S(1 − T 4

∗ /T 4)/4, with T∗ being the temperature
where the pressure vanishes. In this case CS ≤ 3S/4 and
T1S ≤ T e−4/3 is the theoretical prediction.

Figure 1 presents the inverse logarithmic slope, Tslope,
as a function of hadron masses and T1 lines for differ-
ent physical models of the thermostat. Besides the three
above-described bag model approaches we also indicate
the classical Schwarzschild black hole, having C = −2S
and T1 = T e1/2, marked as “mini BH”. One inspects that
this possibility is far from all experimental observations.

We note that theoretically a really constant heat ca-
pacity, C0, stems from the equation of state eq. (22). The
latter is a good ansatz for an effective equation of state
of classical non-Abelian gauge field systems on the lat-
tice [51] and represents the high-E limit of Planck’s S′′(E)
formula for thermal radiation.

Considering the heat capacity in the above scenar-
ios and a standard numerical value of T ≈ 167 MeV
for the reservoir temperature, conjectured for the QGP
at hadronization phenomenology and determined by lat-
tice QCD calculations, one obtains T1P = T = 167MeV,
T1V = T e−1/3 ≈ 120MeV and T1S ≤ T e−4/3 ≈ 45MeV
characterizing the Tsallis distribution of valence quarks.

The conjecture that in heavy-ion collisions a statis-
tical power law energy distribution due to finite phase
space availability corrections to the traditional canonical
distribution may appear is further supported by the ob-
servation that the measure of non-additivity, a = 1/C,
expressed by the inverse power in the fitted power law
tail, is reduced for increasing participant number [52].
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The fitted power C is also tendentiously smaller in e+e−

or pp than in heavy-ion collisions [22]. Finally, we real-
ize that only the adiabatic scenario for the quark matter
thermostat leads to T0 values near to the ones extracted
from experimental analysis by the coalescence assumption,
T1S ≈ T0 ≈ 45–55MeV.

5 Conclusion

In conclusion, the Tsallis entropy formula is derived as
the consequence of the following requirement: we seek
for that non-additive entropy composition rule, which
cancels linearly energy-dependent corrections due to the
finite E − E1 energy in the reservoir to a subsystem’s
thermodynamical inverse temperature. This determines
the composition rule and the entropy formula uniquely
turns out to be the Tsallis entropy. This derivation
explains the particular functional form of the Tsallis
and Rényi formulas as generalized entropy expressions
satisfying the UTI principle. With regard to the physical
interpretation we have obtained q = 1 − 1/C, with C
being the heat capacity of the total system with the
conserved energy E. The canonical temperature of the
subsystem becomes T1 = e−S/C T with T (E) and S(E)
being the traditional temperature and entropy of the
finite reservoir, respectively. A preliminary analysis of
experimental data on particle production seems to be
sensitive to different physical assumptions about a QGP
thermostat. Here the isentropic scenario performs best.

At last we note that in the case of non-constant heat
capacity, a = 1/C(S), the UTI principle (9) can be inte-
grated to a more general L(S) function [34]. In this case
the Tsallis and Rényi formulas do not apply, a more gen-
eral entropy-probability relation emerges from eq. (2).
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35. T.S. Biró, EPL 84, 56003 (2008).
36. T.S. Biró, Is There a Temperature? (Springer, New York,

2011).
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