4,714 research outputs found

    Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy

    Get PDF
    The kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(I) bis(phenanthroline)/ruthenium(II) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(I)–Ru(II) analogs of the homodinuclear Cu(I)–Cu(I) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These results suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations

    POET: POlarimeters for Energetic Transients

    Get PDF
    POET (Polarimeters for Energetic Transients) is a Small Explorer mission concept proposed to NASA in January 2008. The principal scientific goal of POET is to measure GRB polarization between 2 and 500 keV. The payload consists of two wide FoV instruments: a Low Energy Polarimeter (LEP) capable of polarization measurements in the energy range from 2-15 keV and a high energy polarimeter (Gamma-Ray Polarimeter Experiment -- GRAPE) that will measure polarization in the 60-500 keV energy range. Spectra will be measured from 2 keV up to 1 MeV. The POET spacecraft provides a zenith-pointed platform for maximizing the exposure to deep space. Spacecraft rotation will provide a means of effectively dealing with systematics in the polarization response. POET will provide sufficient sensitivity and sky coverage to measure statistically significant polarization for up to 100 GRBs in a two-year mission. Polarization data will also be obtained for solar flares, pulsars and other sources of astronomical interest

    Fine structural changes of fluid catalytic catalysts and characterization of coke formed resulting from heavy oil devolatilization

    Get PDF
    Coke formation from heavy oil cracking and the associated change in the porous structure of fluid catalytic cracking (FCC) catalysts has been studied using a comprehensive range of techniques, including 2D and 3D imaging and carbon/coke characterization techniques. The carbon/coke formed from heavy oil devolatilization has been investigated with a range of oil-to-FCC catalyst ratios (1:3, 1:2, 1:1, 2:1 and 3:1) to simulate the ageing of FCC catalysts in an operating oil refinery. Carbon/coke was formed on all used FCC catalyst samples and was found to generally increase in quantity with the increasing oil-to-FCC catalyst ratios. Coke formation has been correlated with the observed porosity change of the FCC catalyst. Higher quantities of carbon/coke formed on the FCC catalyst due to higher oil-to-FCC catalyst ratios (simulated increase in time on-stream) leads to a decrease of total pore volume and surface area. X-Ray computed tomography (X-Ray CT) studies allowed 3-dimensional imaging of used catalyst particles and showed that the zeolite component of the FCC catalyst remains evenly distributed throughout the FCC particle from the centre to the exterior for pristine and used FCC catalyst particles. This technique showed that while the interior porous structure of the FCC catalyst particle is not affected by the coking, the exterior porous structure is substantially modified for all used FCC catalyst samples. This process of pore collapse and/or clogging at the surface of the particles is likely to have a significant effect on the deactivation of FCC catalysts that is commonly observed. The deeper insight into this process gained through this study is important for understanding how FCC catalysts change with time-on-stream and eventually deactivate and may allow for future catalysts to be developed that are more resistant to deactivation

    The Nature of the Long-Lived Excited State in a Ni^(II) Phthalocyanine Complex Investigated by X-Ray Transient Absorption Spectroscopy

    Get PDF
    The nature of the photoexcited state of octabutoxy nickel(II) phthalocyanine (NiPcOBu₈) with a 500 ps lifetime was investigated by X‐ray transient absorption (XTA) spectroscopy. Previous optical, vibrational, and computational studies have suggested that this photoexcited state has a ligand‐to‐metal charge transfer (LMCT) nature. By using XTA, which provides unambiguous information on the local electronic and nuclear configuration around the Ni center, the nature of the excited state of NiPcOBu₈ was reassessed. Using X‐ray probe pulses from a synchrotron source, the ground‐ and excited‐state X‐ray absorption spectra of NiPcOBu8 were measured. Based on the results, we identified that the excited state exhibits spectral features that are characteristic of a Ni^(1, 3)(3d_(z²), 3d_(x²-y²)) state rather than a LMCT state with a transiently reduced Ni center. This state resembles the (d,d) state of nickel(II) tetramesitylphorphyrin. The XTA features are rationalized based on the inherent cavity sizes of the macrocycles. These results may provide useful guidance for the design of photocatalysts in the future

    Development and psychometric validation of the Chinese version of Skindex-29 and Skindex-16

    Get PDF
    BACKGROUND: Dermatological disease significantly affects patient’s health-related quality of life (HrQoL). Skindex is one of the most frequently used dermatology-specific HrQoL measures. Currently no Chinese version of Skindex is available. The aim of this study was to translate and culturally adapt Skindex-29 and Skindex-16 into Chinese, and to evaluate their reliability and validity. METHODS: Translation and cultural adaption were performed following guidelines for cross-cultural adaption of health-related quality of life measures. Subsequently, a cross-sectional study was conducted in which patients with dermatological disease (n = 225) were enrolled. The Chinese version of Skindex-29 and Skindex-16 and Dermatology Life Quality Index (DLQI) were completed. Reliability was evaluated with internal consistency using Cronbach’s alpha. Validity was evaluated using known-groups validity, convergent validity and factor structure validity. RESULTS: There were both seven items of Skindex-29 and Skindex-16 requiring a second forward- and backward- translation to achieve the final satisfactory Chinese version. The internal consistency reliability was high (range of Cronbach’s alpha for the scales of Skindex-29 0.85-0.97, Skindex-16 0.86-0.96). Known-group validity was demonstrated by higher scores from patients with inflammatory dermatosis than from patients with isolated skin lesions (P < 0.05). Evidence of factor structure validity of the Skindex-29 and Skindex-16 was demonstrated by both exploratory factor analysis that accounted for 68.66% and 77.78% of the total variance, respectively, and confirmatory factor analysis with acceptable fitness into the expected three-factor structure. CONCLUSION: This study has developed semantically equivalent translations of Skindex-29 and Skindex-16 into Chinese. The evaluation of the instruments’ psychometric properties shows they have substantial evidence of reliability and validity for use as HrQoL instruments in Chinese patients with dermatological disease

    Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement

    Get PDF
    In this paper, an analysis of the accuracy-enhancement for the discontinuous Galerkin (DG) method applied to one-dimensional scalar nonlinear hyperbolic conservation laws is carried out. This requires analyzing the divided difference of the errors for the DG solution. We therefore first prove that the alpha-th order (1 <= \alpha <= k+1) divided difference of the DG error in the L2-norm is of order k+(3-alpha)/2 when upwind fluxes are used, under the condition that |f'(u)| possesses a uniform positive lower bound. By the duality argument, we then derive superconvergence results of order k+(3-alpha)/2 in the negative-order norm, demonstrating that it is possible to extend the Smoothness-Increasing Accuracy-Conserving filter to nonlinear conservation laws to obtain at least (3k/2+1)th order superconvergence for post-processed solutions. As a by-product, for variable coefficient hyperbolic equations, we provide an explicit proof for optimal convergence results of order k+1 in the L2-norm for the divided differences of DG errors and thus (2k+1)th order superconvergence in negative-order norm holds. Numerical experiments are given that confirm the theoretical results

    Chemical Control over Immune Recognition: A Class of Antibody-Recruiting Small Molecules That Target Prostate Cancer

    Get PDF
    [Image: see text] Prostate cancer is the second leading cause of cancer-related death among the American male population, and society is in dire need of new approaches to treat this disease. Here we report the design, synthesis, and biological evaluation of a class of bifunctional small molecules, called antibody-recruiting molecules targeting prostate-cancer (ARM-Ps), that enhance the recognition of prostate cancer cells by the human immune system. ARM-P derivatives were designed rationally via the computational analysis of crystallographic data, and we demonstrate here that these materials are able to: (1) bind PSMA with high affinity (high pM to low nM), (2) template the formation of ternary complexes between anti-DNP antibodies, ARM-P, and LNCaP human prostate cancer cells, and (3) mediate the antibody-dependent killing of LNCaP cells in the presence of human effector cells. This manuscript describes the application of fundamental chemical principles to the design of a novel class of molecules with high therapeutic potential. We believe that this general small-molecule-based strategy could give rise to novel directions in treating cancer and other diseases

    Weak Spin Fluctuation with Finite Wave Vector and Superconducting Gap Symmetry in KxFe2-ySe2: 77Se Nuclear Magnetic Resonance

    Full text link
    We report 77^{77}Se-nuclear magnetic resonance (NMR) results down to sufficiently low temperatures under magnetic fields parallel to both the abab-plane and the c-axis in a paramagnetic/superconducting (PM/SC) phase of Kx_xFe2−y_{2-y}Se2_2. The observation of anisotropy in the orbital part of the Knight shift results in the anisotropy of its spin part increasing on approaching the transition temperature. The anisotropy of the Korringa relation suggests the presence of the weak spin fluctuations with a finite wave vector q\bm{q}, which induce the magnetic fluctuations along the ab-plane at the Se site. Such fluctuations do not correspond to the stripe (π,0)(\pi,0) correlation of the Fe moment observed in many Fe-based superconductors, and are not contradictory to weak (π,π)(\pi,\pi) correlations. The nuclear spin-lattice relaxation rate 1/T11/T_1 shows a field-independent T1T∼const.T_1T \sim const. behavior at low temperatures for H∥abH \parallel ab, which is attributed to the nonzero density of states at the Fermi level and can be explained by the sign-changing order parameter even for nodeless gaps. The temperature dependence of 1/T11/T_1 is reproduced well by nodeless models with two isotropic gaps or a single anisotropic gap. The obtained gap magnitude in the isotropic two-gap model is comparable to those obtained in the angle-resolved photoemission spectroscopy experiments.Comment: 6 pages, 6 figures, Accepted for the publication in J. Phys. Soc. Jp

    GRB Polarimetry with POET

    Get PDF
    POET (Polarimeters for Energetic Transients) represents a concept for a Small Explorer (SMEX) satellite mission, whose principal scientific goal is to understand the structure of GRB sources through sensitive X‐ray and γ‐ray polarization measurements. The payload consists of two wide field‐of‐view (FoV) instruments: a Low Energy Polarimeter (LEP) capable of polarization measurements in the energy range from 2–15 keV and a high energy polarimeter (Gamma‐Ray Polarimeter Experiment or GRAPE) that would measure polarization in the 60–500 keV energy range. The POET spacecraft provides a zenith‐pointed platform for maximizing the exposure to deep space. Spacecraft rotation provides a means of effectively dealing with any residual systematic effects in the polarization response. POET provides sufficient sensitivity and sky coverage to measure statistically significant polarization (for polarization levels in excess of 20%) for ∼80 GRBs in a two‐year mission. High energy polarization data would also be obtained for SGRs, solar flares, pulsars and other sources of astronomical interest
    • …
    corecore