2,089 research outputs found

    Space-Filling Designs for Multi-Layer Nested Factors

    Get PDF
    This articles considers computer experiments where levels for continuous factors are selected in sequential order with the level selected for one factor directly a ecting the range of possible levels for the nested factor, and so on for a nite number of factors. In addition, we assume the nested relationships between the factors have no closed form solution. In this paper, we propose an approach for constructing a multi-layer nested factor design, or multi-NFD for short. This space- lling design approach takes advan- tage of the maximin criterion and can be analyzed using a standard Gaussian process model. While the multi-NFD approach can be adapted for future computer experi- ments involving factor relationships of this type, we present results from a particular aerospace computer simulation study

    Summer habitat use and movements of invasive wild pigs (Sus scrofa) in Canadian agro-ecosystems

    Get PDF
    Resource selection informs understanding of a species’ ecology and is especially pertinent for invasive species. Since introduced to Canada, wild pigs (Sus scrofa Linnaeus, 1978) remain understudied despite recognized negative impacts on native and agricultural systems globally. Elsewhere in North America, pigs typically use forests and forage in agricultural crops. We hypothesized Canadian wild pigs would behave similarly, and using GPS locations from 15 individuals, we examined diel and seasonal resource selection and movement in the Canadian prairie region. Forests were predominately selected during the day, while corn (Zea mays L.), oilseeds, and wheat (Triticum aestivum L.) were predominately selected at night. Forests and corn were consistently selected throughout the growing season.Wetlands and forests showed greater use rates than other habitats, with evident trade-offs as crop use increased with the timing of maturation. Activity was consistent with foraging in growing crops. Results indicate diel patterns were likely a function of short-term needs to avoid daytime anthropogenic risk, while seasonal patterns demonstrate how habitats that fill multiple functional roles——food, cover, and thermoregulation——can be optimized. Understanding selection by invasive species is an important step in understanding their potential environmental impacts in novel environments and informs their management

    Matched increases in cerebral artery shear stress, irrespective of stimulus, induce similar changes in extra-cranial arterial diameter in humans.

    Get PDF
    The mechanistic role of arterial shear stress in the regulation of cerebrovascular responses to physiological stimuli (exercise and hypercapnia) is poorly understood. We hypothesised that, if shear stress is a key regulator of arterial dilation, then matched increases in shear, induced by distinct physiological stimuli, would trigger similar dilation of the large extra-cranial arteries. Participants ( n = 10) participated in three 30-min experimental interventions, each separated by ≥48 h: (1) mild-hypercapnia (FICO2:∼0.045); (2) submaximal cycling (EX; 60%HRreserve); or (3) resting (time-matched control, CTRL). Blood flow, diameter, and shear rate were assessed (via Duplex ultrasound) in the internal carotid and vertebral arteries (ICA, VA) at baseline, during and following the interventions. Hypercapnia and EX produced similar elevations in blood flow and shear rate through the ICA and VA ( p < 0.001), which were both greater than CTRL. Vasodilation of ICA and VA diameter in response to hypercapnia (5.3 ± 0.8 and 4.4 ± 2.0%) and EX (4.7 ± 0.7 and 4.7 ± 2.2%) were similar, and greater than CTRL ( p < 0.001). Our findings indicate that matched levels of shear, irrespective of their driving stimulus, induce similar extra-cranial artery dilation. We demonstrate, for the first time in humans, an important mechanistic role for the endothelium in regulating cerebrovascular response to common physiological stimuli in vivo

    Low Thrust Cis-Lunar Transfers Using a 40 kW-Class Solar Electric Propulsion Spacecraft

    Get PDF
    This paper captures trajectory analysis of a representative low thrust, high power Solar Electric Propulsion (SEP) vehicle to move a mass around cis-lunar space in the range of 20 to 40 kW power to the Electric Propulsion (EP) system. These cis-lunar transfers depart from a selected Near Rectilinear Halo Orbit (NRHO) and target other cis-lunar orbits. The NRHO cannot be characterized in the classical two-body dynamics more familiar in the human spaceflight community, and the use of low thrust orbit transfers provides unique analysis challenges. Among the target orbit destinations documented in this paper are transfers between a Southern and Northern NRHO, transfers between the NRHO and a Distant Retrograde Orbit (DRO) and a transfer between the NRHO and two different Earth Moon Lagrange Point 2 (EML2) Halo orbits. Because many different NRHOs and EML2 halo orbits exist, simplifying assumptions rely on previous analysis of orbits that meet current abort and communication requirements for human mission planning. Investigation is done into the sensitivities of these low thrust transfers to EP system power. Additionally, the impact of the Thrust to Weight ratio of these low thrust SEP systems and the ability to transit between these unique orbits are investigated

    Accounting for heterogeneous invasion rates reveals management impacts on the spatial expansion of an invasive species

    Get PDF
    Success of large-scale control programs for established invasive species is challenging to evaluate because of spatial variability in expansion rates, management techniques, and the strength of management intensity. For a well-established invasive species in the spreading phase of invasion, a useful metric of impact is the magnitude by which control slows the rate of spatial spread. The prevention of spatial spreading likely results in substantial benefits in terms of ecosystem or economic damage that is prevented by an expanding invasive species. To understand how local management actions could impact the spatial spread of an established invasive species, we analyzed distribution and management data for feral swine across contiguous United States using occupancy analysis. We quantified changes in the rate of spatial expansion of feral swine and its relationship to local management actions. We found that after 4 yr of enhanced control, invasion probability decreased by 8% on average relative to pre-program rates. This decrease was as high as 15% on average in states with low-density populations of feral swine. The amount of decrease in invasion rate was attributed to removal intensity in neighboring counties and depended on the extent of neighboring counties with feral swine (spatial heterogeneity in local invasion pressure). Although we did not find a significant overall increase in the probability of elimination, increased elimination probability tended to occur in regions with low invasion pressure. Accounting for spatial heterogeneity in invasion pressure was important for quantifying management impacts (i.e., the relationship between management intensity and spatial spreading processes) because management impacts changed depending on the strength of invasion pressure from neighboring counties. Predicting reduction in spatial spread of an invasive species is an important first step in valuation of overall damage reduction for invasive species control programs by providing estimates of where a species may be, and thus which natural and agricultural resources would be affected, if the control program had not been operating. For minimizing losses from spatial expansion of an invasive species, our framework can be used for adaptive resource prioritization to areas where spatial expansion and underlying damage potential are concurrently highest

    Accounting for heterogeneous invasion rates reveals management impacts on the spatial expansion of an invasive species

    Get PDF
    Success of large-scale control programs for established invasive species is challenging to evaluate because of spatial variability in expansion rates, management techniques, and the strength of management intensity. For a well-established invasive species in the spreading phase of invasion, a useful metric of impact is the magnitude by which control slows the rate of spatial spread. The prevention of spatial spreading likely results in substantial benefits in terms of ecosystem or economic damage that is prevented by an expanding invasive species. To understand how local management actions could impact the spatial spread of an established invasive species, we analyzed distribution and management data for feral swine across contiguous United States using occupancy analysis. We quantified changes in the rate of spatial expansion of feral swine and its relationship to local management actions. We found that after 4 yr of enhanced control, invasion probability decreased by 8% on average relative to pre-program rates. This decrease was as high as 15% on average in states with low-density populations of feral swine. The amount of decrease in invasion rate was attributed to removal intensity in neighboring counties and depended on the extent of neighboring counties with feral swine (spatial heterogeneity in local invasion pressure). Although we did not find a significant overall increase in the probability of elimination, increased elimination probability tended to occur in regions with low invasion pressure. Accounting for spatial heterogeneity in invasion pressure was important for quantifying management impacts (i.e., the relationship between management intensity and spatial spreading processes) because management impacts changed depending on the strength of invasion pressure from neighboring counties. Predicting reduction in spatial spread of an invasive species is an important first step in valuation of overall damage reduction for invasive species control programs by providing estimates of where a species may be, and thus which natural and agricultural resources would be affected, if the control program had not been operating. For minimizing losses from spatial expansion of an invasive species, our framework can be used for adaptive resource prioritization to areas where spatial expansion and underlying damage potential are concurrently highest

    Solar Contamination in Extreme-precision Radial-velocity Measurements: Deleterious Effects and Prospects for Mitigation

    Get PDF
    Solar contamination, due to moonlight and atmospheric scattering of sunlight, can cause systematic errors in stellar radial velocity (RV) measurements that significantly detract from the ~10 cm s−1 sensitivity required for the detection and characterization of terrestrial exoplanets in or near habitable zones of Sun-like stars. The addition of low-level spectral contamination at variable effective velocity offsets introduces systematic noise when measuring velocities using classical mask-based or template-based cross-correlation techniques. Here we present simulations estimating the range of RV measurement error induced by uncorrected scattered sunlight contamination. We explore potential correction techniques, using both simultaneous spectrometer sky fibers and broadband imaging via coherent fiber imaging bundles, that could reliably reduce this source of error to below the photon-noise limit of typical stellar observations. We discuss the limitations of these simulations, the underlying assumptions, and mitigation mechanisms. We also present and discuss the components designed and built into the NEID (NN-EXPLORE Exoplanet Investigations with Doppler spectroscopy) precision RV instrument for the WIYN 3.5 m telescope, to serve as an ongoing resource for the community to explore and evaluate correction techniques. We emphasize that while "bright time" has been traditionally adequate for RV science, the goal of 10 cm s−1 precision on the most interesting exoplanetary systems may necessitate access to darker skies for these next-generation instruments

    The global decline of reptiles, deja’ vu amphibians

    Get PDF
    Reptile species are declining on a global scale. Six significant threats to reptile populations are habitat loss and degradation, introduced invasive species, environmental pollution, disease, unsustainable use, and global climate change
    • …
    corecore