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Abstract

This articles considers computer experiments where levels for continuous factors are

selected in sequential order with the level selected for one factor directly affecting the

range of possible levels for the nested factor, and so on for a finite number of factors. In

addition, we assume the nested relationships between the factors have no closed form

solution. In this paper, we propose an approach for constructing a multi-layer nested

factor design, or multi-NFD for short. This space-filling design approach takes advan-

tage of the maximin criterion and can be analyzed using a standard Gaussian process

model. While the multi-NFD approach can be adapted for future computer experi-

ments involving factor relationships of this type, we present results from a particular

aerospace computer simulation study.

Key Words: branching factor, computer experiment, Gaussian process, maximin criterion,

simulation.

Introduction

In this article, we define multi-layer nested factors as those that are continuous and ordered

in their selection. That is, factor levels are selected sequentially with the level selected for
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one factor affecting the range of possible values for a subsequent nested factor. Thus, each

factor is nested within another factor, but the exact nested relationships have no closed form

solution. In this paper, we describe our process of engineering an appropriate space-filling

design for an aerospace computer simulation in order to appropriately fill the experimental

design region using a finite number of points. Our pursuit of a space-filling design takes

advantage of the maximin criterion, which is a common metric used to evaluate space-filling

designs. We refer to the proposed design as a multi-layer nested factor design, or multi-

NFD. While the unique multi-layered nested factor relationship originated from a very

specific aerospace application, we emphasize that our proposed solution is a general approach

that can be adjusted for any computer experiment involving a similar factor relationship.

We also briefly discuss the analysis of such a design using Gaussian process modeling and

some results from our specific application.

For statisticians and engineers, computer experiments have increased in popularity as a

means of emulating physical experiments due to advancements in computational efficiency

and storage. A computer experiment is executable computer code that mathematically

models or emulates an actual physical experiment via codified inputs and outputs. Computer

experiments are beneficial when the physical experiment is a strain on resources or researchers

want to investigate new technologies in a simulation environment prior to implementation

(Montgomery, 2012).

A stochastic computer experiment contains a random component with two runs of the

same set of inputs resulting in possibly two different output responses, which implies a need

for replicates. Conversely, a deterministic computer experiment has no random component,

and so the same set of inputs will yield the exact same outputs if the run is repeated.

The application described in this paper focuses on the deterministic case. Contrary to

physical experiments, one does not need to consider the usual elements of experimental design

such as randomization, replication, and blocking in a computer experiment where a random

component is absent. Additionally, all variation in output depends solely on the different
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treatment combinations. A common strategy to select the factor levels for a computer

experiment is to use a space-filling design, which strategically selects a small number of

uniformly distributed points to fill the experimental region. We strive for uniformity in the

sampling of design points since predictive models of space-filling designs are usually based

on interpolating a response surface over the design region. Unevenly spaced design points

can lead to poor predictions in the sparsely sampled portions of the design space (Dean et

al., 2015).

A common space-filling design for continuous factors is a Latin Hypercube Design, or

LHD, first introduced by McKay et al. (1979). These designs are generalizations of the

Latin Square Design in which there is one run per row and column combination of each two-

factor projection and have the desired property of one-dimensional uniformity. Modifications

to the classic LHD have been proposed through use of the maximin criterion (Johnson et al.,

1990). This criterion seeks a design that maximizes the minimum distance between every

pair of design points. If there are m continuous factors that make up a design region A ⊂ Rm,

then the maximin criterion seeks a space-filling design that maximizes the following:

min
ai,aj∈A;i 6=j

d(ai, aj) (1)

where d is some measure of the distance between any two different design points ai, aj ∈ A.

The p-norm is typically used to calculate d:

d(ai, aj) = ||ai − aj||p = (
m∑
k=1

|aik − ajk|p)1/p (2)

where, for example, if p = 2 then d is the Euclidean distance.

A nested factor is one that only exists for a specific level of an additional qualitative factor

called a branching factor. Hung et al. (2009) proposed a Branching Latin Hypercube Design

(BLHD) to handle an experiment with branching and nested factors as well as shared factors

across all levels of the branching factors. For example, consider evaluating the performance
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of a machine cutting tool that can be produced in two distinct styles. The second machine

cutting tool style adds a handle attachment to the tool that has an angle and length measure,

and this handle attachment is absent from the first style of the cutting tool. In this scenario,

the style of the cutting tool, s, is a categorical branching factor, and the angle, a1, and

length, a2, of the handle attachment are continuous nested factors when s = 2. In addition,

the length, b1, and width, b2, of the cutting tool are shared factors that exist for both styles.

In order to progress to the computer experiment scenario this paper is concerned with,

we introduce two additional layers of complexity:

1. The branching factors are continuous rather than categorical. Instead of possessing an

explicitly known range for a continuous nested factor that exists within a specific level

of a categorical branching factor, we have a nested factor whose range depends on the

value selected for a continuous branching factor. The function f : [minx,maxx] →

[min y,max y] that maps the range for the branching factor, x, to the range for the

nested factor, y, has no closed form solution.

2. There are more than two layers of nesting. While a continuous factor is nested within

a continuous branching factor, the nested factor is itself a branching factor for an

additional continuous nested factor. The number of nesting layers is arbitrary, but we

will make the assumption that only one factor is nested for every layer. Therefore, if

we have a system of k continuous factors where each factor is nested within one other

factor, then there are k − 1 functions f1, f2, · · · , fk−1 that map each branching factor

to its subsequent nested factor.

Figure 1 provides an illustration of our multi-layered continuous nested factors relationship.

In Figure 1, we use the notation described previously along with ui for i = 1, 2, · · · , k

being the selected value for the i-th factor in the k-branching/nested factor system. For the

remainder of this paper, we will use (u1, u2, · · · , uk) = ~u as notation for a single point in the

space, U , of all possible values for the multi-layered continuous nested factors.
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u1 ∈ [minu1,maxu1]

⇓f1
u2 ∈ [minu2,maxu2]

⇓f2
u3 ∈ [minu3,maxu3]

...

uk−1 ∈ [minuk−1,maxuk−1]

⇓fk−1
uk ∈ [minuk,maxuk]

Figure 1: A system of multi-layered continuous nested factors where each f1, f2, · · · , fk−1
has no closed form solution.

The remainder of this article proceeds as follows. In the next section, we discuss the

aerospace simulation study that served as the impetus for this work. Next, we formally

introduce the approach taken to construct a multi-NFD and subsequently illustrate the

design and analysis for our specific application. The article concludes with a summary and

brief discussion.

Motivation

In this section, we discuss a specific aerospace simulation study that presented a system of

multi-layered continuous nested factors. Within the National Aeronautics and Space Admin-

istration (NASA)’s Airspace Operations and Safety Program, the Air Traffic Management

Technology Demonstration # 1 (ATD-1) is a proposed solution in response to current air-

craft arrival procedures leading to high demand on Air Traffic Control, increased delays, and

reduced capacity airports during peak periods of commercial air travel. ATD-1 is developing

technologies to resolve these issues through an integrated system of airborne and ground-

based technologies and decision support tools. Its purpose is to demonstrate the operational

capabilities of three new integrated research technologies. One of these is Flight Deck-based
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Interval Management (FIM): a system of aircraft avionics and flight crew procedures for

achieving or maintaining aircraft spacing requirements. FIM is a speed control technology

that allows an appropriately equipped aircraft, which we call the FIM aircraft, to achieve

a desired spacing goal behind a target aircraft at a specified location usually within five

nautical miles (nmi) of the arrival airport runway (Baxley et al., 2013).

A FIM operated arrival consists of the following steps: the FIM and target aircraft

schedules are computed, the FIM aircraft is given a clearance by Air Traffic Control to begin

FIM operations, the FIM aircraft flies speeds produced by the FIM speed-control algorithm,

and the FIM aircraft achieves a spacing goal behind the target aircraft at a specified location.

The case we are specifically interested in is where the FIM and target aircraft are flying

separate arrival routes that merge together just prior to the runway. In this scenario, the

FIM aircraft achieves a desired spacing goal behind the target aircraft at the point where

the two routes merge, which we call the merge point. Prior to the merge point, FIM is flying

in between two non-FIM aircraft with speeds controlled by air traffic controllers: a lead and

trail aircraft. However, after the merge location, the FIM aircraft begins to fly immediately

behind the target aircraft instead of the lead aircraft. Figure 2 (a) and (b) illustrates this

particular aircraft configuration before and after the merge point, respectively.

Previous human-in-the-loop (HITL) experiments involving pilots and air traffic con-

trollers indicated that spacing violations between aircraft can occur more frequently with

FIM operations in this scenario, specifically between the FIM and trail aircraft prior to the

merge point. These HITL experiments also showed that certain aircraft delay assignments

and, more specifically, the difference in delay assignments between the FIM aircraft and

non-FIM aircraft can lead to an increased occurrence of spacing violations (Robinson, 2014).

In this context, ‘delay’ refers to the amount of time in seconds that an aircraft is estimated

to arrive ahead of schedule. Aircraft absorb this delay by decreasing their speed throughout

the arrival route in order to meet the schedule. A particular aircraft’s Scheduled Times of

Arrival are computed based on those of the preceding aircraft in order to adhere to spacing
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(a)

(b)

Figure 2: The simulated airspace configuration prior to the merge point (a) and after (b).
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requirements.

A computer simulation environment was developed to simulate the previously described

FIM arrival scenario, and a computer experiment was needed to investigate to what extent

differences in delay assignments influence the spacing between aircraft during an arrival.

This complex aircraft scheduling and delay assignment process leads to five factors: the

delay initially assigned to the lead aircraft and the starting location of all four aircraft

referred to as the initial distance-to-go (DTGi) to the runway in nmi. The order in which

we can select the values for these five factors is: 1) Lead aircraft DTGi, 2) Lead aircraft

delay, 3) Target aircraft DTGi, 4) FIM aircraft DTGi, 5) Trail aircraft DTGi.

Thus, these five continuous factors have a multi-layered nested relationship. The par-

ticular value selected for each factor directly affects the range of possible values for the

subsequent factor by the nature of the aircraft scheduling procedure. However, the spe-

cific relationships have no closed form solution. In this particular system of multi-layered

continuous nested factors, the lead aircraftDTGi is the root factor with an unchanging range.

Challenges

In addition to the complexities listed above (i.e., continuous branching factors, multiple lay-

ers of continuous nested factors, and no closed form solution for the relationship between the

layers of nested factors), our specific application involving multi-layered continuous nested

factors also faced two additional challenges. First, the actual factors of interest from a

modeling perspective (in terms of their effect on the response) were the differences in delay

assignments between the FIM aircraft and the three other aircraft. These three factors,

which we call the delay differentials, directly depend on the values selected for the five con-

tinuous nested factors in the aircraft scheduling process. However, this specific relationship

also has no closed form solution. Figure 3 illustrates this relationship with S being the un-

known function that maps points in the continuous nested factor space of aircraft scheduling
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Lead DTGi

⇓
Lead delay FIM delay - Lead delay

⇓ S
Target DTGi =⇒ FIM delay - Target delay

⇓
FIM DTGi FIM delay - Trail delay

⇓
Trail DTGi

Figure 3: The specific system of five multi-layered continuous nested factors mapped by an
aircraft scheduling procedure to three aircraft delay differentials.

factors to the delay differentials. Second, winds were an additional factor incorporated into

the computer experiment. Wind speeds and directions are used in the calculation of aircraft

speeds and Scheduled Times of Arrival, which impacts the branching/nested relationships

within the aircraft scheduling factors. To combat this, we sought a space-filling method that

performed well for most winds.

Space-Filling Approach

In this section, we propose a simple approach for constructing a space-filling design with a

system of k multi-layered continuous nested factors where the factor relationships between

nesting layers have no closed form solution. In the next section, we discuss how we adjusted

this approach to handle our specific aerospace application and challenges.

The proposed space-filling approach hinges on selecting the value, u1, for the root branch-

ing factor in the branching/nested factor relationship. For choosing the number of points

to be sampled by the space-filling method, we reference Loepkky et al. (2009) who propose

an informal rule for the number of runs to be conducted in a deterministic computer exper-

iment: ten times the dimension of the factor space, k. An approach for selecting 10k design

points (u1, u2, · · · , uk) = ~u ∈ U is as follows:
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1. Divide the range of the root branching factor, [minu1,maxu1], into J closed intervals of

equal length where 1 ≤ J ≤ 10k and 10k, the number of design points, is a multiple of

J . In order to cover the entire range of the root factor and have the intervals be of the

same length, the intervals are disjoint partitions with the exception of their endpoints.

Let i specify one of the J equally sized interval partitions of [minu1,maxu1], and set

i = 1 initially.

2. Select u1 randomly from the ith interval. That is, the value for the root branching

factor is drawn from the uniform distribution:

u1 ∼ unif[minu1 +
i− 1

J
(maxu1 −minu1),minu1 +

i

J
(maxu1 −minu1)].

3. Select the values of all remaining branching/nested factors u2, u3, · · · , uk randomly

from their resulting ranges in sequential order:

u2 ∼ unif[minu2,maxu2]

u3 ∼ unif[minu3,maxu3]

...

uk ∼ unif[minuk,maxuk].

4. Repeat Steps 2-3 until there are 10k
J

sample design points originating from the i-th

interval partition of the root branching factor range.

5. Repeat Steps 2-4 each time incrementing i by one until 10k
J

design points originate

from sampling u1 randomly from each of the J partitions of its range for a total of 10k

design points.

This base design method serves as an initial approach for a multi-NFD, which can be

adjusted for a specific computer experiment application by choosing the value of J . The
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initial base design method can also be adjusted by dividing the range of u1 into J intervals

of unequal length, and a different number of points can originate from sampling u1 from

within each of its range’s J intervals. These adjustments are intended to handle the com-

plex interdependencies between the factors within the specific computer experiment with the

assumption that the root factor has the most influence over the resulting ranges of the re-

maining branching/nested factors. Adjusting the base design method is intended to sample

rare, yet possible, design points and to uniformly fill a possibly irregularly shaped design

region, U ⊂ Rk. If time permits, we recommend testing a number of base design methods

(with different adjustments) to determine which method works best for the specific applica-

tion. In order to compare base design method alternatives and select the ‘best’ space-filling

design for a specific application, the maximin criterion can be used:

1. For a given base design approach, generate many (possibly thousands) of designs of

10k points.

2. For each design, compute the maximin criterion (equation 1).

3. Average this criterion over all designs.

4. Repeat Steps 1-3 for each adjustment of the base design method, and select the one

that maximizes the minimum distance between every pair of design points.

Once the base design approach method has been selected, use the maximin criterion again to

select the ‘best’ design of 10k points produced by the chosen method, and use these design

points to run the computer experiment.

Application to Aerospace Simulation Study

We now describe how the general multi-NFD procedure was adjusted for our specific aerospace

application and then briefly describe the analysis conducted.
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Design

As mentioned previously, our computer experiment consisted of five multi-layered nested

factors (see Figure 3), which were mapped by the scheduling procedure, function S, to the

FIM aircraft’s three-dimensional delay differential space. In order to explore the space of

possible values for the delay differentials and better understand how S behaves, a fine grid of

combinations of values for the five branching/nested factors were selected and the resulting

delay differentials were plotted. Eight different wind conditions were used in this simulation

study, and, for brevity, we show the delay differential space for wind #1. Figure 4 illustrates

the delay differential space for wind # 1 in three dimensions (a) and projected onto each

two-dimensional plane (b)-(d).

Figure 4 shows that the delay differential space is more dense towards the middle of its

region and becomes less dense towards its extreme values. Studying the effect of extreme

delay differences on aircraft spacing was of interest to the researchers. We emphasize again

that, for this particular application, we are looking to construct a space filling design in the

delay differential space rather than the nested factor space. Since the delay differential space

is of interest from a modeling perspective, its dimension was used in the calculation of the

number of design points to be used in the computer experiment: 10 x 3 = 30 design points.

A number of possible multi-NFD methods were investigated using the adjustments to the

base design method discussed in the previous section, including those with unequal splits of

the root factor range and an unequal number of design points sampled from each interval.

Through exploration, we found that the minimum distance between every pair of design

points was large when the space-filling method consisted of dividing the root factor range

into equally sized intervals with an equal number of points sampled from each interval. Thus,

the multi-NFD methods compared for this application only differed in the number of equally

sized intervals of the root factor’s range:
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• No Split (J=1): In this design method, all points are randomly selected from the full

range of values for the root factor, and the values for the remaining factors are selected

randomly from their full resulting ranges.

• Split Half (J=2): The range of the root branching factor is divided into two equally-

sized intervals, and one half of the design points start with u1 randomly selected from

each interval. The values for the remaining factors u2, u3, u4, and u5 are chosen ran-

domly within their full resulting ranges.

• Split Third (J=3): The range of the root branching factor is divided into three equally-

sized intervals, and one third of the design points start with u1 randomly selected

from each interval. The values for the remaining factors u2, u3, u4, and u5 are chosen

randomly within their full resulting ranges.

• Split Fifth (J=5): The range of the root branching factor is divided into five equally-

sized intervals, and one fifth of the design points start with u1 randomly selected

from each interval. The values for the remaining factors u2, u3, u4, and u5 are chosen

randomly within their full resulting ranges.

We compared the four selected space-filling methods within each wind condition using

the maximin criterion. For a given wind condition, each of the four techniques was used

to sample 1000 designs of 30 points. For each design, the minimum distance between every

pair of points was computed, and this value was averaged across all 1000 designs. Table 1

presents the average minimum distance between every pair of design points for each of the

four selected techniques for all eight wind conditions.

Although the differences are not substantial, Table 1 shows that in terms of the maximin

criterion, the Split Fifth space-filling method performed the best or second-best for six out

of eight wind conditions. After selecting Split Fifth, the maximin criterion was used to select

the ‘best’ design of 30 points for each of the eight wind conditions. Figure 4 shows the 30

delay differential design points selected by the Split Fifth method for wind # 1. Plots (b)-(d)
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Table 1: The average min d(·, ·) over 1000 iterations of each space-filling technique for all
wind sets. * Largest average min d(·, ·) for a given wind condition.

``````````````̀Wind
Technique

No Split Split Half Split Third Split Fifth

Wind # 1 8.3417* 8.3057 8.1707 8.2772
Wind # 2 7.7411 7.4806 7.6174 7.7561*
Wind # 3 7.9675 7.9225 7.9879 7.990*
Wind # 4 9.2125* 9.1343 8.8717 9.1722
Wind # 5 8.6486 8.7715 8.5702 8.8082*
Wind # 6 7.0062 7.2995* 7.2465 7.1929
Wind # 7 8.2377 8.1586 8.1751 8.2576*
Wind # 8 7.6751 7.6574 7.7306* 7.7088

in Figure 4 show the 30 design points projected onto each two-dimensional delay differential

plane. The points are plotted on top of the full delay differential space projections for wind

# 1. The design points appear to fill the space reasonably well, and we were successful

in sampling some points from the extreme design regions where particular combinations of

delay differential values are less common.

Analysis

This section describes results from a Gaussian process model (Brockwell and Davis, 1991) fit

from the output data of our aerospace computer simulation experiment. This analysis tech-

nique is a very common method used for space-filling designs with a deterministic computer

experiment. A Gaussian process model creates a predicted response surface over the entire

experimental design region using interpolation. This model uses the assumption that any

finite collection of responses in the design region is distributed as a multivariate Gaussian

to predict the response at untested design points. In our case, the response was the Closest

Point of Approach (CPA), which is a measure of the minimum distance between the FIM

aircraft and the lead and trail aircraft over the course of an arrival (throughout one exper-
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(a) (b)

(c) (d)

Figure 4: The full 3-D delay differential space for wind # 1 (a) along with the 30 design
points sampled from the Split Fifth space-filling method projected onto each two-dimensional
delay differential plane (b)-(d).
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imental run). The CPA is a continuous response with a negative value corresponding to a

spacing violation, i.e., the aircraft do not meet the minimum required separation standard.

See the Appendix for a mathematical derivation of the particular Gaussian process model

used for our analysis.

Figures 5-7 display the CPA response surface predicted by the Gaussian process model

against each pair of delay differentials at two different angles for visualization. Only results

for wind # 1 are shown since predicted surfaces were similar for all wind conditions. The

CPA response surface shows how differences in delay assignments affect distance spacings

between aircraft during an arrival. When interpreting the surface, keep in mind that small

(negative) CPA values are undesired as they correspond with spacing violations. Upon in-

spection of the surface, we see that very positive and negative CPA values can be achieved

by many combinations of aircraft delay differentials. However, a close look at Figure 5 reveals

that a minimum CPA is achieved at a FIM and target aircraft delay differential of around

50 seconds across all values of the FIM and trail aircraft delay differential. That is, a spacing

violation is likely to occur when the FIM aircraft is assigned approximately 50 more seconds

of delay than the target aircraft. Also, from Figure 6, we see that overall, CPA decreases

as the FIM and lead aircraft delay differential increases. That is, spacing violations are

more likely to occur as the FIM aircraft is assigned more delay than the lead aircraft. This

is valuable information for future research on FIM operations during similar arrival scenarios.

Discussion

In this paper, we describe the problem of designing a computer experiment when there are

multiple layers of continuous nested factors with no closed form solutions for their relation-

ships. We provide a motivating example from an aerospace computer simulation experiment

which had some additional challenges. We propose a simple approach for constructing a
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(a)

(b)

Figure 5: The predicted CPA response surface versus the FIM and target aircraft delay
differential and the FIM and trail aircraft delay differential at two different angles.
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(a)

(b)

Figure 6: The predicted CPA response surface versus the FIM and lead aircraft delay
differential and the FIM and trail aircraft delay differential at two different angles.
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(a)

(b)

Figure 7: The predicted CPA response surface versus the FIM and target aircraft delay
differential and the FIM and lead aircraft delay differential at two different angles.
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space-filling design with a system of multi-layered continuous nested factors, a multi-NFD,

that can be adapted for specific computer experiments. The maximin criterion can be used

to select the best multi-NFD method adaptation as well as the best design produced by

the chosen method. We illustrate the proposed approach with our specific application and

present results from a Gaussian process model fit to predict a response surface. Results from

this computer experiment inform researchers developing procedures for when FIM opera-

tions should be conducted to minimize the risk of spacing violations between aircraft. Our

approach can be used for future computer simulation experiments involving unique factor

relationships of this type, which NASA has seen in previous studies and predicts to see more

of in the future.

For future research, we recommend investigating more structured design methodologies

for multi-layered continuous nested factors. For example, the value for the root branch-

ing factor could be set and the design approach begin at the subsequent factor effectively

making it the new root branching factor. Other criteria for space-filling designs can also

be investigated such as the minimum potential or maximum entropy criterion. Additional

factor relationships similar to multi-layered continuous nested factors are also worth further

research; these can include more than one continuous factor nested within a particular con-

tinuous branching factor as well as the simpler case of only one layer of a branching and

nested factor.

Appendix

Let y be the function that maps the delay differential input variable space, D, to the CPA

output response space, C, within the computer experiment as such:
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y : D → C, (3)

D ⊂ R3,

C ⊂ R.

For the 30 delay differential design points d1, d2, · · · , d30 ∈ D selected by the space-filling

method, the Split Fifth multi-NFD method, we know y(d1), y(d2), · · · , y(d30) as the CPA

responses recorded by the computer simulation. But what about y(d∗) for some untested

delay differential d∗ ∈ D? We estimate this value with a Gaussian process model, or GP

model. The following formulation for a GP model follows MacDonald et al. (2015) and Do

(2007).

A Gaussian process is a stochastic process where any finite collection of random variables

is distributed as a multivariate Gaussian. That is, a finite collection of random variables

{h(d) : d ∈ D} is distributed as a Gaussian process with mean function m and covariance

function k if for any finite set of elements from the index set d1, d2, · · · , dn ∈ D, the set of

random variables h(d1), h(d2), · · · , h(dn) is distributed as


h(d1)

...

h(dn)

 ∼ N



m(d1)

...

m(dn)

 ,

k(d1, d1) · · · k(d1, dn)

...
. . .

...

k(dn, d1) · · · k(dn, dn)


,

which we also write as h(·) ∼ GP (m(·), k(·, ·)).

In order to connect this GP model formulation with our specific problem, we can model

the CPA response as a realization of the following stochastic process:
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y(di) = µ+ h(di) (4)

i = 1, 2, · · · , 30

where di is one of the 30 delay differential design points, h(·) ∼ GP (m(·), k(·, ·)) as pre-

viously defined, and µ is the true process mean. This is the same function that maps the

delay differential input variable space, D, to the CPA output response variable space, C, in

Equation (4). Even though the computer simulation and the input to output relationships

are deterministic, we have formulated the recorded responses as realizations of the stochastic

process that is the physical process being emulated, which contains some randomness and un-

certainty. This gives us a probabilistic means of predicting the response from a deterministic

computer experiment.

We will make the following common assumptions about the mean and covariance func-

tions of the GP process h(·):

m(h(di)) = E(h(di)) = 0 (5)

k(h(di), h(di)) = V ar(h(di)) = σ2 (6)

k(h(di), h(dj)) = Cov(h(di), h(dj)) = σ2Rij (7)

to allow for ease in parameter estimation. Due to how y(·) is constructed from the h(·)

GP process by adding a constant mean µ from Equation (5), the assumptions in Equations

(6)-(8) imply that y(·) is also a GP process:

y(·) ∼ GP (µ, σ2R)

where R is the covariance matrix with entries Rij. If we make a 30 x 3 data matrix D
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from our 30 delay differential points d1, d2, · · · , d30 ∈ D, then the distribution of y(·) allows

Y = y(D) = (y(d1), y(d2), · · · , y(d30))
T as the vector of 30 CPA responses to be distributed

as a multivariate Gaussian:

Y = y(D) ∼ N(1µ, σ2R)

where 1 is a 30 x 1 vector of one’s. We choose the most commonly used Gaussian correlation

function for R. Also known as the squared-exponential correlation function, it is given by

Rij =
3∏

k=1

exp{−θk|dik − djk|2} (8)

where θ = (θ1, θ2, θ3) is a vector of parameters that require estimation. This common corre-

lation structure is popular due to its desirable properties. These include local smoothness;

that is, nearby di’s will have a correlation ≈ 1 while di’s that are far apart will have a corre-

lation ≈ 0. This means that if an untested delay differential point is very close to a tested

point, then the predicted response at the untested point will be very close to the recorded

response at the tested point.

Using the fact that Y ∼ N(1µ, σ2R), we can derive the Maximum Likelihood Estimators

(MLE)

µ̂ = (1TR−11)−1(1TR−1Y) (9)

σ̂2 =
1

30
· (Y− 1µ̂)TR−1(Y− 1µ̂) (10)

for the µ and σ2 parameters. The MLE estimates in Equations (10) and (11) are used to

obtain the following negative log-likelihood function
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−2 log(Lθ) ∝ log(|R|) + 30 · log[(Y− 1µ̂)TR−1(Y− 1µ̂)] (11)

for estimating the θ parameters where |R| is the determinant of R. Using the MLE technique

along with the parameter estimates and negative log-likelihood function in Equations (10)-

(12), we obtain the best linear unbiased estimator of the CPA response at an untested

d∗ ∈ D as

ŷ(v∗) = µ̂+ rTR−1(Y− 1µ̂) =

(1− rTR−11)

1TR−11
1T + rT

R−1Y = ZTY (12)

where we make the following substitution:

ZT =

(1− rTR−11)

1TR−11
1T + rT

R−1 (13)

in which r = (r1(d
∗), r2(d

∗), ..., r30(d
∗)) with ri(d

∗) = corr(h(d∗), h(di)) computed by plug-

ging d∗ and di into Equation (9) for Rij. The predicted response at an untested design point

in Equation (13) also has a Mean Square Error of

MSE(ŷ(d∗)) = E[(ŷ(d∗)− y(d∗))2]

= σ̂2(1− 2ZT r + ZTRZ) = σ̂2

1− rTR−1r +
(1− 1TR−1r)2

1R−11


where we take advantage of Equation (14) for easier notation. This is how we estimate the

CPA response at untested delay differential points using the recorded responses from the

30 tested points. We can now predict a coarse CPA response surface over a grid of points

covering the entire three-dimensional delay differential space, D.
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