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Abstract. Success of large-scale control programs for established invasive species is challenging to evalu-
ate because of spatial variability in expansion rates, management techniques, and the strength of manage-
ment intensity. For a well-established invasive species in the spreading phase of invasion, a useful metric
of impact is the magnitude by which control slows the rate of spatial spread. The prevention of spatial
spreading likely results in substantial benefits in terms of ecosystem or economic damage that is prevented
by an expanding invasive species. To understand how local management actions could impact the spatial
spread of an established invasive species, we analyzed distribution and management data for feral swine
across contiguous United States using occupancy analysis. We quantified changes in the rate of spatial
expansion of feral swine and its relationship to local management actions. We found that after 4 yr of
enhanced control, invasion probability decreased by 8% on average relative to pre-program rates. This
decrease was as high as 15% on average in states with low-density populations of feral swine. The amount
of decrease in invasion rate was attributed to removal intensity in neighboring counties and depended on
the extent of neighboring counties with feral swine (spatial heterogeneity in local invasion pressure).
Although we did not find a significant overall increase in the probability of elimination, increased elimina-
tion probability tended to occur in regions with low invasion pressure. Accounting for spatial heterogene-
ity in invasion pressure was important for quantifying management impacts (i.e., the relationship between
management intensity and spatial spreading processes) because management impacts changed depending
on the strength of invasion pressure from neighboring counties. Predicting reduction in spatial spread of
an invasive species is an important first step in valuation of overall damage reduction for invasive species
control programs by providing estimates of where a species may be, and thus which natural and agricul-
tural resources would be affected, if the control program had not been operating. For minimizing losses
from spatial expansion of an invasive species, our framework can be used for adaptive resource prioritiza-
tion to areas where spatial expansion and underlying damage potential are concurrently highest.

Key words: control; elimination; expansion; invasion rate; invasive species; management; spatial heterogeneity; spatial
spread; Sus scrofa; wild pig.
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INTRODUCTION

Approximately one-sixth of the land surface
globally is in danger of being invaded by non-
native species that can cause devastating
perturbations to local ecosystems and human
livelihoods (Early et al. 2016). The invasion pro-
cess can be challenging to predict once a species
becomes established and enters the spreading
phase. The spreading phase for most invasions is
driven by both short- and long-range dispersal
(Shigesada et al. 1995). Invasion rate is slower
initially and dominated by short-range dispersal,
but increases over time, partly due to increases in
long-range dispersal and establishment and
growth of satellite populations (Andow et al.
1990). In some cases, long-distance dispersal can
be human driven (Tabak et al. 2017, including
illegal movements), making it challenging to pre-
dict spatial spreading patterns using mechanistic
models that are informed by demographic pro-
cesses of the invasive species and landscape
alone (i.e., without data that describe anthro-
pogenic movements). Thus, considering spatial
heterogeneity in expansion rates is essential for
understanding and predicting invasion rates, for
planning effective spatial prioritization of limited
management resources, and for evaluating the
impacts of local management on global invasion
rates.

Once established on continental mainlands,
control of invasive species is logistically challeng-
ing and expensive because the containment of
spatial spread is more difficult relative to con-
fined local or island systems. Funders and the
public can become unsupportive of expensive
control programs for invasive species if clear evi-
dence and metrics of progress are not presented
routinely (Hone et al. 2017). In addition to
providing justification of return on investment,
developing practical evaluation frameworks that
are applied from the beginning of large-scale
control programs is also important for guiding
control efficiently as conditions change (Elliott
and Kemp 2016, Hone et al. 2017). Despite
their importance, the development of compre-
hensive methods of evaluating the impacts of
control measures on invasive species populations
is underemphasized relative to other steps in
the management process (Hone et al. 2017).

Consequently, it remains challenging to plan
invasive species programs that operate through
local control efforts to collectively affect conti-
nental-scale invasion processes.
Even for local-scale management programs,

monitoring progress and determining when
objectives have been achieved are a major chal-
lenge (Morrison et al. 2007, Ramsey et al. 2009).
Compared with local programs, invasive species
management programs with large geographic
extents present additional challenges. There are
often limited or no pre-program data covering
the extent of the geographic area to be managed.
Secondly, because funding is distributed over rel-
atively large spatial areas, funding to measure
program outcomes in addition to conducting
control operations may be limited. Thirdly, there
are often cultural differences across large geo-
graphic areas such that stakeholder interests are
in conflict, which can prevent implementation of
program objectives and measures of outcome
over the full geographic scope of interest (Decker
and Chase 1997). And lastly, the outcome of
interest can be difficult to measure with a single
metric because both the program objectives and
the damage caused by the invasive species can
vary widely across space and time. Thus, it is
important to develop multiple straightforward,
sound metrics for assessing program progress
that can infer the effects of management
broadly without comprehensive sampling, while
accounting for spatial heterogeneity in spreading
processes.
To address gaps with evaluation methodolo-

gies for large-scale invasive species control pro-
grams, our first objective was to identify how
funding a national-scale program can influence
effort and patterns of control of an invasive spe-
cies geographically through time. Understanding
how funding for invasive species management
can translate to realized management actions
provides a foundation for designing research to
assess cost-effectiveness, develop adaptive man-
agement tools, and evaluate the impacts of differ-
ent management strategies. Our second objective
was to evaluate the impact of local-scale manage-
ment actions on national-scale rates of spatial
spread of an invasive species. We also quantified
the relationship between changes in the rate of
spatial spread and factors such as management
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intensity, invasion pressure (occupancy status of
neighboring areas), and funding levels. We
hypothesized that the effects of management
intensity would depend on the strength of inva-
sion pressure. Our analysis provides a unique
opportunity to understand the spatio-temporal
impacts of large-scale invasive species programs
on spatial invasion processes because national-
scale databases for both control efforts and spe-
cies distributions are rare. Such data are critical
for developing monitoring plans and program
assessment methods that can be easily applied to
other invasive species systems. Our approach for
determining spatial prioritization of future con-
trol work and fiscal resources over large geo-
graphic extents is relevant to a wide diversity of
invasive species.

MATERIALS AND METHODS

Study system
The recently established U.S. National Feral

Swine Damage Management Program (NFSP),
implemented in fiscal year 2014 by the United
States Department of Agriculture/Animal and
Plant Inspection Service (USDA/APHIS), is an
example of a large-scale national invasive species
control program. Feral swine (Sus scrofa or wild
pigs, Keiter et al. 2016) have been expanding
rapidly in the United States (Snow et al. 2017a)
and are invasive species in the Americas, Ocea-
nia, and Australia, where they cause significant
damage to native ecosystems (Hone 2002, Felix
et al. 2014, Bankovich et al. 2016, McClure et al.
2018) and pose a health risk to wildlife, humans,
and livestock (Miller et al. 2017). Even in much
of their native range in Eurasia and Africa, they
are often considered pests due to ecosystem dis-
turbance from rooting behavior, predation of
sensitive species, and disease threats to sensitive
species, livestock, and humans (Massei and
Genov 2004, Barrios-Garcia and Ballari 2012).
Their high fecundity, generalist behavior, and
ability to spread rapidly in new areas (Bieber and
Ruf 2005, Massei et al. 2015) have presented an
urgency to develop national-level control pro-
grams, especially in countries where they are
non-native.

The objectives of NFSP are to eliminate feral
swine populations in U.S. states where possible
and reduce damage and disease risks where

large populations are well established. Although
the main motivation of NFSP is to protect human
livelihoods (agriculture), and animal/human
health, protecting native species and habitats of
conservation concern is also paramount (e.g.,
Barrios-Garcia and Ballari 2012, McClure et al.
2018). The NFSP is implemented through state-
level management activities and their coopera-
tors (i.e., locally) which results in state-to-state
variation in how objectives are implemented.
Similarly, there is also variation in the amount of
control that is implemented by cooperators
(some of which is not recorded), making it
impossible to attribute all effects to NFSP fund-
ing alone. Developing an evaluation method that
accounts for regional heterogeneity in manage-
ment intensity and rates of spatial expansion pro-
vides a unique opportunity for understanding
the impacts of local-scale invasive species man-
agement programs at the national scale.
The impact of national-scale control programs

for invasive species can be valued through two
main metrics that comprise overall impact:
reduction in damage or conflict in areas where
the invader currently occurs, and prevention of
further invasion and damage or conflict in new
areas. Here, we focus on methods of estimating
prevention of spatial spread of feral swine—a
necessary component for estimating the value of
ecosystem or economic damage prevented by
nation-wide control efforts. We use two data-
bases to evaluate changes that have occurred
since the start of the NFSP: (1) the USDA/APHIS
Management Information System (MIS) and (2)
the National Feral Swine Mapping System
(NFSMS). MIS records all wildlife management
activities conducted by USDA/APHIS Wildlife
Services (WS). NFSMS records spatial locations
of feral swine sightings annually in all states,
providing a temporally varying distribution of
feral swine in the contiguous United States (see
McClure et al. 2015, Snow et al. 2017a for predic-
tive mapping with these data).

MIS database and processing
All database processing was conducted in R

programming language (R Core Team 2016). The
MIS data maintain WS control activities at the
property level. Most of this work is funded by
the NFSP, but some WS work is funded by other
National, state, or local cooperators. We limited
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the MIS data to properties with feral swine
removals and to properties with agreements in
place to conduct removals of feral swine. For
properties with feral swine removals, these data
included the date/time, location (to the county
level), methods of removal used (e.g., aerial gun-
ning, ground shooting, traps, or snares), amount
of effort relative to each removal method (e.g.,
number of hours flown in a helicopter, number
hours spent ground shooting, or number of trap
nights for traps or snares), and the number of
feral swine removed by each method. We sum-
marized spatial and temporal trends in the use of
removal methods, counts of feral swine removed,
effectiveness of each method, and the times and
materials used by each method.

NFSMS database and processing
National Feral Swine Mapping System is main-

tained by Southeastern Cooperative Wildlife Dis-
ease Study (SCWDS) in collaboration with WS
and University of Georgia (Corn and Jordan
2017). The data describe the distribution of feral
swine across the conterminous United States
annually since 2008. These data consist of poly-
gons describing the known geographic extent of
established feral swine populations that have
been present for two or more years and have evi-
dence of reproduction. Data are reported nation-
ally from wildlife professionals from state wildlife
resources agencies and WS via manual drawing
of polygons that reference areas where feral swine
meeting the mapping criteria have been observed.
The general public is also part of the detection
process as they regularly report sightings of feral
swine which are then verified by state and Fed-
eral wildlife professionals by site visits and cam-
era traps or removal methods. As feral swine are
pests that cause obvious and often extensive dam-
age to agriculture and other anthropogenic food
sources, and because they are sought out by recre-
ational hunters, there are many stakeholders that
are monitoring for their presence.

We aggregated the NFSMS polygon data for
each year from 2010 to 2017 to the county level.
If a county had any overlap with a feral swine
occurrence polygon, it was given a 1 (feral swine
presence), otherwise it was a 0 (feral swine
absence). We chose counties as our sampling unit
because they represented the smallest common
unit of measure for the MIS and NFSMS data.

County size, of course, is variable across the Uni-
ted States (the mean is 2463 km2 � 95%, confi-
dence intervals of 119 km2, and a SD of
3375 km2).

Maps of MIS removal data overlaid on NFSMS
distribution data
We mapped the annual removal of feral swine

(using MIS data) overlaid onto NFSMS reporting
of feral swine presence. We aggregated both the
removal and coverage data into 3 two-year time
periods: 2012–2013 (prior to the start of NFSP),
2014–2015 (first two years of NFSP), and 2016–
2017 (second two years of NFSP). Counties with
no feral swine reported during the two years
were 0, and counties with feral swine reported
during at least one of the two years were 1 s. We
used a two-year scale because although the
NFSMS database was updated annually, the
reporting system required that new populations
be detected in a county for two years before it
was considered occupied. To aid in visual inter-
pretation (county boundaries were too small to
distinguish colors), we aggregated data to Agri-
cultural Statistics Districts (ASD; National Agri-
cultural Statistics Service 2018) and classified the
quantiles of these rates with separate color scales
for areas within versus outside the distribution
of feral swine (as determined by the NFSMS dis-
tribution data).

Analysis of removal patterns
To assess trends in removal over time, we fit a

linear model with the log of county-level mean
annual removal as the dependent variable, and
the interaction of time period (2012–2013, 2014–
2015, and 2016–2017) and state name as indepen-
dent variables. We excluded states with less than
10 feral swine removal events over all counties
and time periods. A negative coefficient for
removal over time indicated less removal over
time, potentially indicating that populations
were being reduced (i.e., more difficult to find
animals). In contrast, a positive relationship indi-
cated more removals over time (i.e., more
resources led to more removals) suggesting that
population abundance was not yet affected sig-
nificantly at the state level.
We hypothesized that slopes of the relation-

ships between removal counts and time were
due to underlying population density—that is,
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states with lower densities of feral swine would
have negative slopes because increased removal
rates were causing decreases in density so there
were less feral swine being detected. Similarly,
we predicted there would be positive slopes in
states with high-density populations because the
addition of resources for removal would lead to
increased removal rates. To test this hypothesis,
we regressed the estimated state-level removal
rate slopes on state-level average density esti-
mates reported in Lewis et al. (2017). We used
the slope coefficients for each state from this
model as the dependent variable and regressed
relative feral swine density values by each state
(density estimation methods described in
Appendix S1).

Model of spatial spreading processes
Reduction in spatial spread of invasive species

can be quantified by either observing a decrease
in invasion rate (i.e., a slower rate of new inva-
sions) or by observing a contraction in the spatial
distribution. We evaluated these two components
by testing for changes in invasion and extinction
probabilities since the start of NFSP. We used the
county-level NFSMP presence/absence (occu-
pancy) data aggregated to the two-year time scale
as described above and included an additional
earlier time period (2010–2011) to allow estima-
tion of invasion and extinction rates prior to
NFSP. We modeled occupancy data using a modi-
fied dynamic occupancy model (Eq. 1-3, MacKen-
zie et al. 2006). A dynamic occupancy model
jointly models the processes of occupancy (w),
invasion probability (c), and local extinction prob-
ability (e) in county i at time t.

Occupancy analysis is a useful framework for
disentangling observation error from process
error when modeling species distribution data
(MacKenzie et al. 2006). We assumed detection
probability to be 1 because our monitoring meth-
ods were intense (i.e., see previous; multiple
stakeholders, including the general public and
dedicated wildlife professionals); our analysis
was conducted at a coarse spatial and temporal
scale (i.e., county wide within a 2-yr period,
which tends to be robust to detection error;
Efford and Dawson 2012); we were monitoring
for establishment, rather than presence (i.e., signs
of establishment are more readily detectable);
and feral swine seek out and cause obvious

damage to anthropogenic resources, making
them easy to detect in most areas. Nevertheless,
because county size is highly variable, we con-
ducted an exploratory analysis to consider
whether it affected detection probability. We
hypothesized that if county size affected detec-
tion probability, there would be a positive rela-
tionship between county area and occupancy. We
tested this hypothesis using a mixed logistic
regression model with occupancy as the response
variable; county area, invasion pressure, and
time period as fixed effects; and county as a ran-
dom effect (Appendix S1: Fig. S1, Table S1). The
analysis showed no consistent relationship of
occupancy and county area—instead the rela-
tionship of occupancy and county area depended
strongly on invasion pressure and time period.
Thus, we did not include county size as a predic-
tor of detection probability and fixed detection
probability at 1.
Invasion probability was modeled using logistic

regression with covariate data (X0
i;t) by estimating

parameters (bc) to explain the probability of
becoming occupied given a county was not cur-
rently occupied. Local extinction probability was
modeled using logistic regression with covariate
data (X0

i;t) by estimating parameters (be) to explain
the probability of becoming unoccupied given a
county was occupied. Similarly, the initial occu-
pancy (wi1) was modeled as a logistic regression
by state funding category (a system for classifying
states by annual funding allotment; described
below) with parameters bw. This approach
allowed us to estimate county-level invasion and
extinction probabilities before and after the start
of NFSP and examine factors that affected these
invasion and extinction processes as well as initial
occupancy (wi1). Subsequent occupancy estimates
(wi,t) are derived using Eq. 4.

logitðwi;1Þ ¼ X0
ibw (1)

logitðei;tÞ ¼ X0
i;tbe (2)

logitðci;tÞ ¼ X0
i;tbc (3)

wi;t ¼ ðwi;t�1ð1� ei;tÞ þ 1� wi;t�1
� �

ci;tÞ (4)

For both invasion and extinction processes, we
included covariate data on invasion pressure
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from neighboring counties (how surrounded a
county is by counties with feral swine at the cur-
rent time period) and management intensity (the
log number of animals removed weighted by the
area managed). We calculated invasion pressure
as the proportion of a county’s border that shared
a border with occupied neighboring counties to
account for effects of variable county area in
neighboring counties with feral swine. To evalu-
ate potential effects of variable county area on
inference of management intensity effects, we
compared models that weighted management
intensity based on area managed using AICc

(Burnham and Anderson 2002; Appendix S1:
Table S2).

For invasion probability, we presented the
model where current management intensity in
neighboring counties was weighted by the pro-
portion of shared border length with its neigh-
boring counties that were experiencing control.
This covariate performed similarly on invasion
probability to the model without border length
weighting (Appendix S1: Table S2; i.e., where
management intensity on invasion probability
was simply the unweighted log total number of
removals in surrounding counties).

For extinction probability, which was more
dependent on management within the focal
county than management in the neighboring
counties, we compared models where manage-
ment intensity on extinction probability was
weighted by the area occupied by feral swine
(i.e., a density of management intensity), to mod-
els where the management intensity on extinc-
tion probability was simply the log number of
removals in the focal county (Appendix S1:
Table S2). For this weighting, we divided the
maximum area of the county occupied by feral
swine during the study (2010–2017), by the log
number of removals within a county, using the
NFSMS polygon data as the occupancy data. For
extinction probability effects, the models with-
out the area weighting on management inten-
sity were more supported by the analysis
(Appendix S1: Table S2) and thus were used for
presentation of the results. Lastly, because man-
agement effects were cumulative over the 2-yr
time scale of the analysis, it was unclear whether
management intensity in the current or previous
time period should be most influential on extinc-
tion probability. Thus, the choice of considering

management intensity in the current versus pre-
vious time period was also made using AICc

(Appendix S1: Table S2). For simplicity, we chose
the model with the lowest absolute value of AICc

for inference (Appendix S1: Table S3: unweighted
management intensity and a one-year lag on
extinction probability; weighted management
intensity on invasion probability) and presenta-
tion in the results.
As there were many counties that were in

regions far from invading populations, we
included a dummy variable where a 1 indicated
a county that had at least one occupied neighbor-
ing county during the study period, and a 0
otherwise. We reported inference for parameters
related to the subset of counties with at least 1
occupied neighbor during the study period
(dummy variable value = 1) because our focus
was on the impact of management on spatial
spread, and we were interested in spatial pro-
cesses at invasion fronts, that is, invasion by nat-
ural pig movement at the edges of established
populations. Although the subset of the data
with the dummy variable = 0 has the potential to
inform effects of translocation on invasion and
extinction probabilities, we did not present these
estimates because they were highly uncertain
(i.e., there was not enough information in the
data to estimate parameters informatively). All
of the covariate data were similarly aggregated
to the county level and two-year time scale to
match the response data.
The NFSP determines state funding levels (0–

5) based on management objectives. States with
funding level 0 have the objective of preventing
invasion; they included CT, DE, MD, MA, MN,
MT, NE, RI, SD, and WY. States in levels 1 and 2
are aiming to eliminate early-phase invasions
and prevent new invasions; they included ME,
ND, WA, ID, NV, UT, CO, AZ, NE, IA, WI, MI,
NY, NH, VT, NJ, OR, NM, KS, IL, IN, OH, PA,
and WV. States with funding level 3 are aiming
to eliminate eventually and minimize current
damage; they included MO, TN, VA, KY, and
MI. States with funding levels 4 and 5 have well-
established populations and are aiming to mini-
mize damage; they included CA, TX, OK, AR,
LA, MS, AL, GA, SC, NC, and FL. We aggre-
gated states with similar objectives to estimate
management effects and changes in invasion
probabilities. We used two separate models to
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estimate changes in invasion and extinction
probability and test the effects of management.
The objective of the management model
(Appendix S1: Table S3) was to quantify the
degree to which management impacted the spa-
tial spread of feral swine. For this model, we
evaluated time period, invasion pressure, and
management intensity and all interactions of
these covariates because we expected that man-
agement effects would depend on both propor-
tion of the county surrounded by pigs and time
period. For the management model, we esti-
mated the effects of management on extinction
probability separately for states that included an
elimination objective (levels 1, 2, and 3) com-
pared to those in levels 4 and 5 that aimed to
minimize damage and level 0 that aimed to pre-
vent invasion (Appendix S1: Table S3). We esti-
mated effects on invasion probability separately
for states with lower invasion risk (groups 0, 1,
and 2) compared with states that likely have
stronger invasion pressure (level 3 states that on
the invasion front) and those with well-
established populations (groups 4 and 5).

The objective of the second model (space-time
model; Appendix S1: Table S4) was to quantify
overall changes in invasion and extinction rates
though space and time. This model included pro-
gram classification and time period as covariates.
We aggregated states with similar management
objectives as with the management model. We
evaluated fits of the models using an area under
the curve statistic (AUC) where values above 0.7
represent a reasonable fit to the data (Fielding
and Bell 1997). All statistical analyses were per-
formed in program MARK (White and Burnham
1999).

RESULTS

Descriptive patterns of removal effort
Since the start of the NFSP, removal of feral

swine occurred in more states (Figs. 1, 2) and
aerial gunning was used more often than prior to
the initiation of the NFSP (Fig. 1). Prior to the
NFSP, aerial gunning was mostly used in western
states (e.g., TX, OK, and KS), whereas once the
NFSP was initiated aerial gunning became used
more widely in eastern states (Fig. 1). Similarly,
more states have been able to diversify their
repertoire of techniques that are used (Fig. 1).

The use of ground shooting techniques has
increased substantially across the nation (Fig. 1)
since the start of NFSP (Appendix S1: Figs. S2,
S3), while removals using snares have dropped
substantially, and removals using traps have
fluctuated (Appendix S1: Fig. S2, S3).
For trapping, catch per unit effort (CPUE)

tended to be slightly higher during March–May
and September both before NFSP and currently
(Appendix S1: Fig. S4, compared thick and thin
lines in the bottom right plot). For aerial gun-
ning, CPUE during NFSP was substantially
higher in December relative to other months of
the year, whereas it fluctuated slightly with no
clear pattern before NFSP (Appendix S1: Fig. S4).
For ground shooting, CPUE patterns were simi-
lar before and after NFSP, being slightly higher
in December–January and April. In general,
CPUE tended to be higher after NFSP for aerial
gunning and ground shooting, but the opposite
was true for trapping (Appendix S1: Fig. S4).

Spatio-temporal removal trends
Overlaying the MIS database on the NFSMS

database highlighted the extent of the United
States with feral swine were present but no
apparent control was being implemented by
NFSP (Fig. 2, i.e., areas in black indicate gaps in
control relative to the distribution of feral swine).
Before NFSP, there were 65 ASD with feral swine
reported but no control, out of 205 ASD with
feral swine reported—that is, 32% of ASDs that
had feral swine did not have any removal work.
In 2014–2015, this first increased to 43% (78/201),
but decreased to 26% by 2016–17 (46/174). Thus,
overall, since the start of NFSP these areas have
decreased 6%, indicating that the geographic
scope of feral swine removal has increased. Simi-
larly, as NFSP has progressed, there have been
more removals in areas where feral swine had
not been documented in the NFSMS data
(Fig. 2). Total ASDs in contiguous United States
with feral swine reported decreased from 205/
329 (62%) in 2012–2013 to 174/329 (53%) in 2016–
2017.
Removal rates decreased significantly over

time in two states: NM and OR, but increased
significantly in nine states: TX, NC, MS, SC, AL,
OK, LA, MO, and KS (Appendix S1: Fig. S5).
Other states with removal work (FL, CA, GA,
AR VA, TN, KY, OH, WV) showed no significant

 ❖ www.esajournals.org 7 March 2019 ❖ Volume 10(3) ❖ Article e02657

PEPIN ET AL.



Fig. 1. Raw counts of pigs removed by each removal method. Pie charts show MIS data for each state as the
proportion of removals by each method. Size of the pie chart corresponds to the total number of pigs removed in
the state during the year (removal counts indicated by the gray scale circles).
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change in removal rates (Appendix S1: Fig. S5).
As hypothesized, there was a significantly posi-
tive relationship between the change in removal
rates and the estimated state-level density of feral
swine (Appendix S1: Fig. S6).

Effects of invasion pressure and management on
spatial spread

From the raw NFSMP data (Appendix S1:
Tables S5, S6), 80 more counties (from 1230 to
1310 counties) were occupied between 2010 and
2011 and 2012–2013 (prior to NFSP). Then, from
2012–2013 to 2014–2015 (during the first two
years of NFSP), the total number of counties
occupied was 87 more (1310–1397 counties). In
contrast, by 2016–2017 there were nine fewer
counties occupied relative to 2014–2015 (1397–
1388 counties), indicating an increase in overall
occupancy since the start of NFSP (1310–1388
counties) but a decrease in the proportion of
occupied counties over time. Indeed, the occu-
pancy model predicted that in 2012–2013, inva-
sion probability for a county with neighboring

pig populations was 0.14 (95% credible interval,
CI: 0.11–0.18). This invasion probability was sim-
ilar at 0.13 (95% CI: 0.10–0.17) during the first
two years, but reduced significantly to 0.06 (95%
CI: 0.04–0.09) during the second two years of
NFSP (Fig. 3A; Appendix S1: Tables S4, S6) indi-
cating that invasion probability had decreased
by 0.08 on average. There was no signifi-
cant change in extinction probability since the
start of NFSP: Before extinction, probability was
between 0.03 and 0.07, after it was between 0.02
and 0.05 (Fig. 3A; Appendix S1: Tables S4, S6).
Thus, the overall spatial area occupied by feral
swine has not been reduced yet, despite ongoing
extinction in specific counties. For example, of
the counties that border at least one county with
a documented pig population, 62.2% were occu-
pied in 2012–2013, and 66.4% and 65.9% were
occupied in 2014–2015 and 2016–2017, respec-
tively. Overall, results show that spatial expan-
sion continues, but its overall rate has slowed
since the start of NFSP, and elimination in speci-
fic counties has occurred.

Fig. 2. Raw counts of pigs removed by ASDs and overlayed onto the pig distribution as observed in NFSMS
data. Red shades show removal intensity where there are pigs. Black shows where there are pigs but no
removals. Blue shades show removal intensity in areas where there is no distribution data coverage. White repre-
sents areas where pigs have not been reported.
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For example, in 2012–2013 the estimated inva-
sion probability was between 0.11 and 0.18,
which predicts that between 89 and 145 counties
(out of 807 available) were newly invaded. If this
invasion rate in available counties continued,
there would have been between 86 and 141 new
counties (out of 782 available) and between 89

and 146 new counties (out of 810 available)
invaded in 2014–2015 and 2016–2017, respec-
tively, for a total of between 175 and 287 counties
newly invaded (231 on average). However, based
on the changes in invasion probability over time
that we estimated from the occupancy model, we
predicted that only between 78 and 133 counties

Fig. 3. Probability of invasion and extinction using space-time model. (A) Invasion (black circles) and
extinction (gray triangles) probabilities for counties on average during transitions for the indicated time frames
(X-axes). Raw data: filled symbols; model predictions: open symbols with 95% prediction intervals. (B and C)
Absolute difference in the predicted proportion of counties (Appendix S1: Table S4, S6) with new invasions (B) or
extinctions (C) relative to the previous time period (where 2014–2015 is compared against 2012–2013). Gray: no
NFSMS data; white: no change. Red scale indicates increased invasion probability (B) or decreased extinction
probability (C); blue scale indicates decreased invasion probability (B) or decreased extinction probability (C).
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(out of 782) were invaded in 2014–2015 and
between 32 and 73 (out of 810) were newly
invaded in 2016–2017 for a total of between 110
and 206 newly invaded counties (158 on aver-
age), a difference of 73 counties on average.
Applying the same logic but restricting the pre-
dictions to only counties in the level 0–2 funding
categories, the model predicted that between 122
and 178 counties would have been newly
invaded since the start of NFSP if invasion rates
were maintained at pre-program levels, but
instead only between 13 and 41 counties were
newly invaded (i.e., demonstrating a significant
reduction in the number of newly invaded coun-
ties), a difference of 122 counties on average.

Although invasion probability has decreased,
the strength of the effect varied significantly by
time period and funding level (Fig. 3B;
Appendix S1: Tables S4, S6). Relative to before
NFSP, invasion probability after 4 yrs of NFSP
decreased significantly by 0.15 on average in
states with funding levels 0–2 and by 0.27 on
average in states with funding levels 4–5
(Appendix S1: Table S6). In states with level 3
funding, invasion probability first increased sig-
nificantly by 0.19 and then decreased substan-
tially by 0.08 for a net increase of 0.11 on average
since the start of NFSP (Appendix S1: Table S6).

Invasion probability increased and extinction
probability decreased significantly with invasion
pressure (IP in Appendix S1: Table S3; Fig. 4). As
expected, there was a significant interaction
between invasion pressure and management
intensity for invasion probability (extinction
probability showed a non-significant trend), thus
we showed model predictions for low (10% of
neighbors with pigs) versus high (50% of neigh-
bors with pigs) invasion pressure. At low inva-
sion pressure, there was a trend of decreased
invasion probability and increased extinction
probability (although only for the later time per-
iod) with increased management intensity
(Fig. 4, middle; Appendix S1: Table S3), but there
were no such trends under high invasion pres-
sure (Fig. 4, right; Appendix S1: Table S3).

DISCUSSION

Expansion rates of established invasive species
can vary spatially due to landscape and anthro-
pogenic factors (McClure et al. 2015, Tabak et al.

2017). By considering local variation in invasion
rates (invasion pressure), we demonstrated a
decrease in the rate of spatial spread of an inva-
sive species at the national scale since the start of
enhanced control. Additionally, the concept of
separating spatial spread processes into invasion
and extinction is important to consider because
changes in invasion rates may not be obvious but
could demonstrate substantial management
effects, for example, new invasions may continue
to occur but their rate is reduced. Based on pre-
dictions of decreased invasion rate from the
occupancy model, we predicted that invasion
was prevented in 73 counties on average (9.2% of
counties available in 2012–2013) by 2016–2017,
with a minimum of 0 and a maximum of 177.
While uncertainty is fairly large in these esti-
mates that consider all states, if we consider only
counties in the level 0–2 funding category, the
predicted number of counties where invasion is
prevented is between 81 and 165, or 122 on aver-
age (27.7% of available counties in 2012–2013), a
highly significant number.
A caveat is that because we did not have inde-

pendent controls, we could not distinguish
whether the decreased proportion of counties
with new invasions was due to management
alone or whether some other processes con-
tributed. Indeed Snow et al. (2017a) found that
the rate of spatial invasion increased dramati-
cally from 1982 to 2009 but was slightly lower in
2009–2012 relative to 2004–2009 suggesting some
slowing of spread. We rationalize, though, that
this decreased rate of spread could also have
been due to increased management because dur-
ing 2009–2012 increased policies and efforts for
controlling feral swine were already being imple-
mented (Miller et al. 2018).
Going forward, it would be valuable to estab-

lish long-term monitoring sites using a case
and control design. Sites could have similar
invasion pressure and differing management
(including no management), to quantify factors
that are causing the observed decrease in inva-
sion rates. Additionally, while we assumed
detection probability was 1 (see Methods), there
is likely some low level of misclassification that
occurred. A dedicated monitoring program
would serve to collect data that could inform
detection probability to reduce potential bias in
estimates of occupancy processes and provide
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guidance for improved surveillance in low-
density regions.

Estimates of reduction in spatial invasion rates
provide the foundation for estimating economic
benefits in terms of the cost of damage prevented
by management programs, that is, quantifying

the effort–outcomes relationship (Hone et al.
2017). To illustrate this concept, consider that the
average damage to six crops (corn, soybeans,
wheat, rice, peanuts, and sorghum) in 2014 in
North Carolina (a state with unoccupied counties
adjacent to occupied counties) was US$4,684,000

Fig. 4. Effects of invasion pressure and management for 2014–2015 (early) and 2016–2017 (late). Predictions of
invasion (top) and extinction probabilities (bottom) from the management model (Appendix S1: Table S3) with
95% prediction intervals (shading). Left plots show the relationship of invasion and extinction probabilities as a
function of invasion pressure. The vertical lines show the values of invasion pressure that are used in the middle
and right plots. Middle and right plots show the effects of management intensity on invasion and extinction
probabilities.
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(Anderson et al. 2016), or US$64,164 per county
on average among the 73 counties with feral
swine in 2014 (Appendix S1: Table S5). Our
results suggest that if invasion were prevented in
122 counties with similar damage potential, this
may have prevented US$7,828,008 in damage to
the six crops alone. Of course, this is an oversim-
plification because damage estimates depend on
the specific commodities and natural resources
that are present in counties available for invasion
(which varies widely nationally), and the esti-
mates are only for six crops—excluding damage
to other crops, natural resources, and livestock.
The value of losses also depends on the density
of feral swine, not presence alone. That is, dam-
ages would start out smaller before reaching
these high levels that were calculated in areas
where there are well-established populations.
Nonetheless, in the longer term, prevention of
invasion could have large financial savings that
are an important component of valuation of
overall economic savings attributed to NFSP.
Our approach provides a component of this val-
uation process—estimates of where invasion has
been prevented—that can be combined with
location-specific commodity and damage rate
data for valuation of the damage prevented. Sim-
ilar logic could be applied to estimate the value
of damage prevented in terms of other resources
such as natural resources, recreation opportuni-
ties, personal or commercial property, or live-
stock disease risk. Additionally, our results can
inform the overall cost-benefit value of NFSP
itself, by adding the monetary benefits from
decreased rates of spatial spread with the mone-
tary benefits of reducing damage in high-density
areas (not quantified here), weighed against the
costs of program implementation.

Our descriptive summaries showed that NFSP
has (1) led to increased use across the country of
the most effective removal techniques for feral
swine, (2) increased removal overall, and (3)
facilitated removal in areas where it was not pre-
viously occurring. Illustrating these changes is
important for justification of how NFSP funding
allocations are being applied. While these trends
in implementation of removal techniques do not
themselves reveal impacts of an invasive species
control program, they provide guidance for pri-
oritization of resources and the design of
research studies that could evaluate the impact

of these changes on damage. Especially for large-
scale programs, understanding how resources
are being used across space and time can be
obscure, but is important for evaluating cost-
effectiveness of different local management
strategies.
We observed substantial shifts in usage of dif-

ferent methods of removal across the country, for
example there has been increased use of aerial
gunning and ground shooting techniques since
the start of NFSP. It is well known that the effi-
cacy of different methods of removal varies by
habitat and population density (Choquenot et al.
1999, West et al. 2009). Thus, in addition to
increasing overall removals, these changes could
be increasing the efficacy of removal by expand-
ing the repertoire of methods available in differ-
ent areas. Research to quantify the cost-
effectiveness of different methods of removal in
different ecoregions and population densities is
needed to understand whether the allocation of
resources by NFSP funding is optimal. Such
research studies would also provide essential
data for developing science-based approaches
for optimizing management strategies adaptively
in space and time. Also, some research funding
from NFSP is going toward the development of
new methods such as toxicants (e.g., Snow et al.
2017b) and fertility control (see Pepin et al. 2017a,
b for theoretical evaluation). These are invest-
ments that have not yet been realized in terms of
feral swine removals. Another potential indirect
effect is that the NFSP has brought personnel,
expertise, and equipment infrastructure to states
that previously had limited infrastructure. When
cooperative stakeholders share costs, overall
impact could be higher than would have been
possible without the cooperation (e.g., state man-
agement programs that use NFSP infrastructure
for cost-sharing). These effects of national-scale
programs are more difficult to quantify, but are
important to consider in overall assessment.
There were clear patterns of efficiency that are

important to consider in national-scale resource
allocation planning. For example, CPUE for aer-
ial gunning was dramatically higher in the early
fall and month of December, yet effort has been
highest in March and April—indicating a poten-
tial inefficiency. In contrast, CPUE has clear
peaks in December–April for ground shooting
and March–May and September for trapping, yet
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effort by ground shooting tended to be lowest in
December–January and effort for trapping
tended to be fairly consistent with slight
increases in July–October. Thus, it seems that
emphasizing aerial gunning in the fall and
December, and emphasizing other techniques in
the spring (and trapping in the fall as well) could
be most efficient. In addition, previous work has
shown that prioritizing removals during non-
birthing periods can improve the efficiency of
control (Pepin et al. 2017a,b), suggesting that fur-
ther optimization of timing could be helpful.
However, our results are national-scale averages
and previous work has indicated that forage
availability can greatly impact feral swine popu-
lation growth and establishment (Tabak et al.
2018). Thus it is possible that these trends could
vary by state due to differences in feral swine
birth dynamics, resource availability, the amount
of removal that is occurring by non-NFSP mecha-
nisms (e.g., state/county/other Federal partners
and private landowners), and state-level man-
agement plans. A state-level CPUE analysis
could help to identify potential inefficiencies at a
more appropriate spatial scale, which could then
be used to guide research to identify optimal
strategies for application of different removal
techniques. Also, management plans can not
only depend on optimal resource allocation in
terms of the spatio-temporal efficacy of different
management techniques, but must also consider
requests by landowners to mitigate current con-
flicts. Thus, frequency of access to private lands
is dependent on when cooperators allow/request
work to be done. Adaptive management tools
that include both landowner availability and effi-
cacy of different techniques in space and time
could help to optimize program performance.

An unexpected trend in our analyses was that
CPUE for trapping tended to be higher before
NFSP relative to after NFSP. A potential explana-
tion for this is that the NFSP, which has an expli-
cit goal of feral swine elimination, has increased
trapping areas where feral swine are rare. As
CPUE decreases with population densities
(McCann and Garcelon 2008), trapping in more
areas where feral swine are rare could lead to an
overall decrease in CPUE. A second reason for a
decrease in CPUE from trapping could be that,
since the start of the NFSP, there has been a large
influx of less experienced trappers, and trapping

work has expanded into new habitats where
trapping techniques, including baits and lures,
have not yet been optimized. For example, the
attractiveness of specific baits can be relative to
other local resources (Lavelle et al. 2017). Trap-
ping efficiency could likely be improved in areas
where feral swine are rare or where baits are less
effective by investing research in new baits and
lures that are intensely attractive over a variety
of ecological conditions (Lavelle et al. 2017).
We also found that state-level removal rates

have both increased and decreased since the start
of the NFSP and that the state-level variation in
removal rates can be partly explained by feral
swine densities prior to the start of the NFSP.
This is consistent with our hypothesis that in
high-density states, removal rates might increase
as more resources are invested into removing
feral swine because densities are high enough
that removals are not affecting them (thus add-
ing more resources allows for removal of more
feral swine). In contrast, we expected that
increased resources in low-density states should
lead to lower removal rates over time as the
increased resources could impact the density,
making it more difficult to remove feral swine in
the future. Although our results were consistent
with this density hypothesis, underlying feral
swine densities are not the only possible explana-
tion for state-level variation in removal rates.
Feral swine populations could learn to avoid
some control methods, which could be another
factor leading to decreased removal rates over
time (Choquenot et al. 1996).
Extinction probabilities did not increase signif-

icantly, and there was an overall increase in occu-
pied counties. Thus, nationally the area occupied
by feral swine has not contracted significantly,
despite elimination ultimately being an objective
in several areas. One likely reason is that measur-
able impacts can be delayed even when manage-
ment is being effective. Indeed, in all areas,
invasion rates decreased even more during the
second two years relative to the first two years of
NFSP indicating that progress is occurring. Even
in level 3 states where invasion rates increased
relative to pre-program levels, we found that
invasion rates decreased during the second two
years of NFSP relative to the first two years. One
reason for the lagged effects (or a lack of detect-
ing effects) is that we were focused on occupancy
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(presence/absence status)—the threshold of a
county changing from 1 to 0. Counties with more
pigs will be delayed in making that transition
because substantial effort and time are required
to locate and remove individuals when the popu-
lation is abundant. An analysis of the effects of
management intensity on decreasing densities
would be valuable for understanding the cause
of lagged effects.

For interpreting the meaning of changes in
invasion rates, it is critical to consider both the
invasion potential and the management objective
in different areas. In level 3 states, the objective is
to locate undetected feral swine populations and
reduce damage caused by their presence. Feral
swine populations are typically well established
(moderate population densities) in several iso-
lated, distinct areas (Hartin 2006). Invasion rates
in level 3 states were only slightly decreased dur-
ing the second two years relative to the first two
years and remained higher than pre-program
levels during both time periods of NFSP. This
increased rate of invasion is likely because inva-
sion potential is high in these states (e.g., MO,
TN, VA, and KY) because there are many unoc-
cupied counties in these states (68.2% in 2012–
2013 to 43.9% in 2016–2017 on average) that sur-
rounded dense, productive populations. Well-
established populations in these areas can con-
tinue to produce many offspring for dispersal to
new areas posing a continued high risk of new
populations being established. Because one of
the NFSP objectives is to locate feral swine popu-
lations, increased detection may be contributing
to apparently increased invasion rates relative to
pre-program levels (when fewer populations
were detected).

In level 0–2 states, the objectives are early
detection removal, invasion prevention, and
elimination. In these states, feral swine popula-
tions occur at very low densities but have poten-
tial to invade new areas (McClure et al. 2015,
Snow et al. 2017a). Thus, decreased invasion
rates may indicate a substantial reduction in
invasion risk. Even in level 2 states, where feral
swine populations are established at low densi-
ties, and the primary objective is to work toward
elimination, and invasion rates decreased from
pre-program levels during both time periods
(2014–2015 and 2016–2017), despite the high
availability of unoccupied counties. In contrast,

in level 4–5 states, the management objectives
are to reduce feral swine populations and mini-
mize the damage caused by them, thus elimina-
tion is not an objective. Feral swine populations
are well established across these states and few
counties are unoccupied (ranging from an aver-
age of 6% in 2012–2013 to 4% in 2016–2017, with
some states being below 1% by 2016–2017;
Appendix S1: Table S6). Thus in these states,
reductions in the proportion of counties with
new invasions could be partly due to the recent
low levels of invasion potential. A more informa-
tive metric of program performance in these
states is the proportional reduction in density
and its relationship to value of damage reduction
—an important goal for future work.
One of the biggest challenges with manage-

ment of feral swine is translocation of pigs by
humans, sometimes over long distances. Translo-
cation has been documented in several countries
(Spencer and Hampton 2005, Goedbloed et al.
2013, Tabak et al. 2017, Hernandez et al. 2018).
In the United States, translocation is a common
practice (Tabak et al. 2017, Hernandez et al.
2018) despite some states having regulations
against the importation and release of feral swine
(Centner and Shuman 2015). In cases where new
populations are established from long-distance
sources, management in neighboring counties
may have little impact. In fact, one of the chal-
lenges that managers face is the propensity for
the public to re-establish pigs once management
has driven their populations to low levels. Thus,
a na€ıve analysis of management effects on the
proportion of counties with new invasions could
appear to show no effects on or increased inva-
sion potential in heavily managed areas with
high rates of anthropogenic introduction. While
intentional anthropogenic movement may not be
as pervasive for invasive pests that have low
value by the general public, it is a major issue for
a species such as feral swine which can have high
value to many members of the public (e.g., in
terms of hunting opportunities, food, or land-
owner revenue; Adams et al. 2005, Weeks and
Packard 2009). Nonetheless, even for invasive
species of low value, unintentional long-distance
movement can lead to similarly complex spatial
expansion patterns (Garnas et al. 2016). One way
to account for the non-local spread is to conduct
genetic analyses. Tracking genotypes for a
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portion of individuals removed during a man-
agement program could provide valuable spatial
connectivity data for quantifying management
effects.

Another application of invasion analysis could
be for spatial prioritization of resources.
Although we only presented average results
grouped to the funding level classifications, it
would be straightforward to identify states or
groups of counties within those classifications
that have higher than average invasion probabili-
ties. Accounting for regional predictions of the
proportion of counties with new invasions with
potential damage that could be caused by feral
swine in those regions would highlight where
the risk of new losses and invasion are concur-
rently highest. Incorporating estimates of the
proportion of areas with new invasions into risk
assessment methodology is useful for prioritizing
resource allocation (Gallardo and Aldridge 2013,
Booy et al. 2017) and providing decision-support
tools such as systematic conservation planning
(McIntosh et al. 2017).

CONCLUSIONS

Prioritizing resources to areas where feral
swine are known to be present but where there is
currently little or no management (light peach
and black areas in Fig. 2) and where rates of new
invasions are highest (as predicted by the spread
model) could help to accelerate overall damage
reduction by maximizing the damage prevented.
This prioritization will involve both increased
management intensity on lands for which there
is an active agreement and engaging more
landowners. Similarly, state-level evaluation of
CPUE by different removal techniques combined
with landowner availability data could be linked
in a decision-support tool to help optimize which
techniques should be prioritized seasonally.
Although our analyses do not demonstrate dif-
ferences in cost-effectiveness of different removal
techniques in space and time, the trends we
showed emphasize that research to understand
how cost-effectiveness of different suites of tech-
niques varies across space and time could be
important for informing the decision-support
tool. More broadly, our analysis provides a con-
ceptual foundation for evaluating large-scale
programs and emphasizes the importance of

developing evaluation frameworks before pro-
gram implementation to help guide prioritiza-
tion of resources and maintain funding from
stakeholders. The next important step will be to
combine estimates of decreased invasion with
distributions of commodities, natural resources,
or sensitive species and their associated values in
order to estimate the value of damage prevented.
Once the value of damage prevented is esti-
mated, it can be balanced against invasion risk
estimates (as we present here) to determine spa-
tial management plans that would maximize the
damage prevented.
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Appendix S1 

Accounting for Heterogeneous Invasion Rates Reveals Management Impacts on the 
Spatial Expansion of an Invasive Species 

Kim M. Pepin, David W. Wolfson, Ryan S. Miller, Michael A. Tabak, Nathan P. Snow

Kurt C. VerCauteren, and Amy J. Davis

METHODS 

State-level density estimates 

State-level estimates of feral swine density were predicted from the fitted model developed in Lewis et 

al. 2017. Briefly, this approach involved multiple linear regression of wild pig density estimates around the 

globe as the dependent variable, and biotic and abiotic data as the independent variables. Predictions were 

made at 1 km2 resolution. We used this model to predict feral swine densities within the polygons of feral 

swine occurrence in 2013 as determined by the NFSMS for the 20 states that we estimated removal rates (AL, 

AR, CA, FL, GA, KS, KY, LA, MS, MO, NM, NC, OH, OK, OR, SC, TN, TX, VA, WV). We took the 

average of the 1 km2-resolution predictions within the polygons of occurrence within each state to be the 

average state-level feral swine densities. We then rescaled these absolute densities by dividing each by the 

maximum state-level absolute density to transform the absolute state-level densities into relative densities. 

References 

Lewis, J.S., Farnsworth, M.L., Burdett, C.L., Theobald, D.M., Gray, M., and R.S. Miller. 2017. Biotic and 

abiotic factors predicting the global distribution and population density of an invasive mammal. Scientific 

Reports 7:44152.   



Supplementary Tables 

Table S1. Generalized linear mixed-effects model fit for occupancy with county area, invasion pressure, and 

time period as fixed effects, and county as a random effect. This analysis was to examine the effects of variable 

county area on reporting occupancy. If county area is an important contributor to detecting occupancy we would 

expect a significant positive relationship between occupancy probability and county area. The results show that 

invasion pressure has the most significant effect on predicting occupancy probability. 

 

Model information: 

Number of observations 1956 

Fixed effects coefficient 8 

Random effects coefficient 978 

Covariance parameters 3 

Distribution Binomial 

Link Logit 

FitMethod MPL 

 

Formula: 

    Y ~ 1 + time*pressure + time*area + pressure*area + time:pressure:area + (1 + time | county) 

 

Model fit statistics: 

    AIC       BIC       LogLikelihood    Deviance 

    9693.3    9754.7    -4835.6               9671.3   

 

Fixed effects coefficients (95% CIs): 

Name Estimate SE tStat DF pValue Lower Upper 

(Intercept) -1.59 0.31 -5.20 1948 2.2E-07 -2.19 -0.99 

time -0.29 0.12 -2.31 1948 0.02 -0.53 -0.04 

pressure 1.09 0.69 1.58 1948 0.11 -0.26 2.44 

area -8.1E-05 6.4E-05 -1.26 1948 0.21 -2.1E-04 4.5E-05 

time:pressure 1.86 0.28 6.65 1948 3.9E-11 1.31 2.41 

time:area 8.2E-05 2.8E-05 2.89 1948 0.004 2.6E-05 1.4E-04 

pressure:area 4.9E-04 2.1E-04 2.37 1948 0.018 8.4E-05 9.0E-04 

time:pressure:area -2.1E-04 7.4E-05 -2.87 1948 0.004 -3.6E-04 -6.8E-05 

 

Random effects covariance parameters: 

Group: county (489 Levels) 

Effect1 Effect2 Type Estimate 

(Intercept) (Intercept) std 1.423 

time (Intercept) corr -0.5546 

time time std 0.43867 

 

 

  



Table S2. Model selection results for covariate data in the Management Model. We considered models with and 

without weighting for county area differences on management intensity. For invasion probability, weighting 

meant that the log total number of removals in surrounding counties was weighted by the border length of the 

counties that had removals. For extinction probability, weighting meant that the log total number of removals in 

the focal county were divided by the maximum area occupied by pigs during 2010-2017 (similar to a management 

intensity ‘density’). We also considered whether management intensity (MI) acted more strongly on extinction 

probability in the current time period or at a one year lag. L: likelihood; k: number of parameters. 

  

Model differences AICc 

Delta 

AICc 

AICc 

Weights 

Model 

L k Deviance 

Extinction: Unweighted MI; Lag on MI. 

Invasion: Weighted MI 3907.6 0.00 0.61 1.00 37 3833.3 

Extinction: Unweighted MI; Lag on MI. 

Invasion: Unweighted MI 3908.5 0.89 0.39 0.64 37 3834.2 

Extinction: Unweighted MI; No lag on MI. 

Invasion: Weighted MI 3919.4 11.9 0.00 0.00 38 3843.2 

Extinction: Unweighted MI; No lag on MI. 

Invasion: Unweighted MI 3920.3 12.8 0.00 0.00 38 3844.1 

Extinction: Weighted MI; Lag on MI. 

Invasion: Weighted MI 3923.3 15.7 0.00 0.00 36 3851.1 

Extinction: Weighted MI; Lag on MI. 

Invasion: Unweighted MI 3923.5 15.9 0.00 0.00 37 3849.3 

Extinction: Weighted MI; No lag on MI. 

Invasion: Weighted MI 3924.6 17.1 0.00 0.00 38 3848.4 

Extinction: Weighted MI; No lag on MI. 

Invasion: Unweighted MI 3926.2 18.6 0.00 0.00 37 3852.0 

Extinction: No MI. 

Invasion: No MI. 

3943.8 36.2 0.00 0.00 23 3897.7 

   



Table S3. Parameter estimates and goodness of fit for the top Management model (highlighted in Table 2). 

 

Index Label Estimate SE LCI UCI 



Intercept 2.3 0.17 2.02 2.67 

Level 0 (initial ) -6.1 0.38 -6.79 -5.32 

Level 1 (initial ) -5.4 0.27 -5.96 -4.91 

Level 2 (initial ) -3.8 0.20 -4.22 -3.44 

Level 3 (initial ) -3.2 0.19 -3.60 -2.85 

Level 4 (initial ) -0.3 0.21 -0.69 0.13 

 (local 

area not 

occupied) 

Intercept 29.1 0.90 27.3 30.9 

 (local 

area 

occupied) 

Intercept -6.88 0.58 -8.01 -5.75 

Level 0 1305.9 2.55 1300.91 1310.90 

Level 123 7.39 0.64 6.13 8.64 

2010-11 to 2012-2013 (T1) 

in Level 123 
0.45 0.42 -0.37 1.27 

2012-13 to 2014-2015 (T2) 

in Level 123 
-0.28 0.46 -1.20 0.63 

Invasion pressure (IP) in 

Level 123 
-5.42 0.77 -6.94 -3.91 

 Within-county 

management in t-1 (WM) 

in Level 123 

1.36 0.85 -0.30 3.03 

IP x WM in Level 123 -4.57 2.85 -10.15 1.02 

T1 x IP in Level 123 -1.49 1.27 -3.98 1.00 

T1 x WM in Level 123 14.92 928.03 -1804.01 1833.86 

T1 x IP x WM in Level 

123 
27399 0.20 -27399.76 -27398.99 

T2 x IP in Level 123 -0.66 1.35 -3.30 1.99 

T2 x WM in Level 123 -4.32 2.51 -9.24 0.61 

T2 x IP x WM in Level 

123 
7.16 4.98 -2.60 16.91 

 (local 

area not 

occupied) 

Intercept -4877 0.00 -4877 -4877 

Level 012 -2266 1.47 -2269 -2263 

 (local 

area 

occupied) 

Intercept -5.01 0.80 -6.58 -3.44 

T1 1.92 0.53 0.89 2.95 

T2 1.27 0.56 0.17 2.37 

IP 4.42 1.08 2.29 6.54 

Neighbor management in 

t (NM) 
-3.89 2.27 -8.33 0.56 

IP x NM 7.19 3.25 0.82 13.56 

T1 x IP -1.59 0.87 -3.29 0.11 



T1 x NM 2.05 1.73 -1.34 5.43 

T1 x IP x NM -3.01 2.63 -8.16 2.14 

T2 x IP -1.20 0.89 -2.95 0.55 

T2 x NM -0.23 1.78 -3.73 3.26 

T2 x IP x NM 0.65 2.71 -4.67 5.97 

Level 012 0.00 0.70 -1.36 1.37 

Level 3 -0.99 0.74 -2.45 0.47 

IP x Level 012 0.35 0.97 -1.55 2.25 

IP x Level 3 3.06 1.03 1.05 5.08 

NM x Level 012 2.17 1.77 -1.31 5.65 

NM x Level 3 3.43 1.96 -0.41 7.27 

IP x NM x Level 012 -3.86 2.40 -8.58 0.85 

IP x NM x Level 3 -6.06 2.78 -11.50 -0.62 

      

AICc = 3907.6     

AUC with all data = 0.80     

AUC with subset data = 0.78 (only data that had at least one transition)  

 



Table S4. Parameter estimates and goodness of fit for the Space-Time model. 

 

Index Label Estimate SE LCI UCI  



Intercept 2.3 0.17 2.02 2.67  
Level 0 -6.1 0.38 -6.79 -5.32  
Level 1 -5.4 0.27 -5.96 -4.91  
Level 2 -3.8 0.20 -4.22 -3.44  
Level 3 -3.2 0.19 -3.60 -2.84  
Level 4 -0.3 0.21 -0.69 0.13  

 (local area not 

occupied) 

Intercept -0.1 0.00 -0.13 -0.13 

 

 (local area 

occupied) 

Intercept -6.9 0.58 -8.02 -5.75  
Level 0 18.9 0.00 18.85 18.85  
Level 0 x T1 18.9 0.00 18.85 18.85  
Level 0 x T2 -0.1 0.00 -0.10 -0.10  

Level 12 5.9 0.60 4.72 7.08 
 

Level 12 x T1 -0.6 0.29 -1.12 0.00  
Level 12 x T2 -0.8 0.27 -1.29 -0.24  
Level 3 3.7 0.67 2.44 5.06  
Level 3 x T1 1.7 0.40 0.93 2.50  
Level 3 x T2 -1.8 1.06 -3.88 0.28  

 (local area not 

occupied) 

Intercept -17.9 460.1 -919.8 884.0  
Level 012 -4.2 306.6 -605.2 596.7  

(local area 

occupied) 

Level 012 -5.0 0.58 -6.13 -3.86  
Level 012 x T1 3.3 0.59 2.14 4.46  
Level 012 x T2 2.0 0.62 0.78 3.22  

Level 3 -1.5 0.17 -1.87 -1.18 
 

Level 3 x T1 -1.1 0.29 -1.65 -0.51  
Level 3 x T2 0.5 0.22 0.03 0.89  
Level 45 -1.7 0.41 -2.47 -0.86  
Level 45 x T1 1.4 0.46 0.49 2.28  

Level45 x T2 0.8 0.50 -0.18 1.77 
 

AICc = 4514.5      

AUC with all data = 0.94      

AUC with subset data = 0.88 (only data that had at least one transition) 

 

  



 
Table S5. Descriptive summary of state-level changes. 
 

 

 

     

     

     

     

     

     

     

Level

State Counties 2014 2004 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Status

Connecticut 8 0 0 0 0 0 0 0 0 0 0 0 0

Delaware 3 0 0 0 0 0 0 0 0 0 0 0 0

Maryland 24 0 0 0 0 0 0 0 0 0 0 0 0

Massachusetts 14 0 0 0 0 0 0 0 0 0 0 0 0

Minnesota 87 0 0 0 0 0 0 0 0 0 0 0 0

Montana 56 0 0 0 0 0 0 0 0 0 0 0 0

Nebraska 93 0 2 9 9 9 9 0 0 0 0 0 0

Rhode Island 5 0 0 0 0 0 0 0 0 0 0 0 0

South Dakota 66 0 0 0 0 0 0 0 0 0 0 0 0

Wyoming 23 0 0 0 0 0 0 0 0 0 0 0 0

Maine 16 1 0 0 0 0 0 0 0 0 0 0 0

New York 62 1 0 3 3 4 4 10 10 10 0 0 0 Extinction

Iowa 98 1 1 1 1 1 1 2 2 1 1 1 0 Extinction

New Jersey 21 1 0 0 3 3 2 2 2 2 1 1 0 Extinction

Colorado 64 1 1 3 3 3 3 3 3 3 1 1 1

Idaho 44 1 0 0 0 1 1 1 1 1 1 1 1

North Dakota 53 1 0 1 1 1 1 1 1 1 1 1 1

Washington 37 1 0 1 1 1 1 0 0 0 1 1 1

Wisconsin 72 1 0 1 1 1 1 3 3 3 1 1 1

New Hampshire 10 1 1 1 2 2 2 3 3 3 3 3 2

Nevada 17 1 3 3 3 3 3 3 3 3 2 2 3

Utah 29 1 0 0 0 0 0 3 3 3 3 3 3

Vermont 14 1 0 0 0 0 0 4 4 4 3 3 3

Arizona 15 1 4 4 4 4 4 8 8 8 6 6 3

Illinois 102 2 0 0 4 7 7 8 8 1 5 5 2

Indiana 92 2 11 11 11 10 10 22 22 7 4 4 3

Pennsylvania 67 2 0 2 2 2 2 19 19 23 13 13 4

Oregon 36 2 8 18 18 18 18 18 18 18 18 18 8

Kansas 105 2 16 16 22 22 22 21 14 12 9 9 9

West Virginia 55 2 0 0 0 0 0 8 8 8 12 12 12

New Mexico 33 2 12 12 12 11 11 19 19 19 15 15 12

Ohio 88 2 7 22 32 34 24 23 24 18 23 23 18

Michigan 83 3 0 0 1 47 18 19 19 17 18 18 1

Virginia 95 3 3 3 7 10 10 20 20 20 22 22 25

Missouri 115 3 23 38 38 38 38 38 38 38 42 45 44

Kentucky 120 3 11 12 13 14 14 17 17 5 64 64 56

Tennessee 95 3 36 40 40 40 40 46 46 46 57 57 77

South Carolina 46 4 43 43 43 43 43 45 45 41 46 46 46

louisiana 64 4 61 61 61 61 62 62 62 60 62 62 62

Alabama 67 4 63 63 63 63 63 64 64 64 67 67 67

Arkansas 75 4 59 69 68 70 70 72 72 71 73 73 73

North Carolina 100 4 59 60 63 65 68 71 71 73 76 76 82

Mississippi 82 4 79 79 79 79 79 81 81 78 81 82 82

Georgia 159 4 140 139 139 141 141 142 142 141 146 146 146

California 58 5 57 57 57 57 57 57 57 54 57 57 57

Florida 67 5 66 65 65 65 65 65 65 64 66 66 66

Oklahoma 77 5 51 52 56 56 56 76 76 74 75 75 76

Texas 254 5 238 238 238 238 238 253 253 253 253 253 253

Number of counties occupied



 
Table S6. Summary of spatial spreading processes estimated from the Space-Time Model (also summarized 

in Figure 5 of the main text). Only estimates for counties with at least one occupied neighbor are reported 

(i.e., dummy variable = 1). The ‘All’ rows are derived from weighted averages of invasion and extinction 

probabilities from estimates within each funding level using the unoccupied and occupied counties as 

weights, respectively.  

 

 
     

     

 

  

Counties with at least one occupied neighbor

Level 

in 

2014

States Objectives Period
Counties 

Occupied

Counties 

Unoccupied

Proportion 

Occupied

Mean Lower Upper Mean Lower Upper

2010-2011 139 483 22.4% NA NA NA NA NA NA

2012-2013 182 440 29.3% 0.16 0.13 0.19 0.18 0.12 0.25

2014-2015 176 446 28.3% 0.05 0.03 0.07 0.15 0.10 0.21

2016-2017 131 491 21.1% 0.01 0.00 0.02 0.27 0.21 0.34

2010-2011 149 290 33.9% NA NA NA NA NA NA

2012-2013 140 299 31.9% 0.07 0.04 0.1 0.2 0.14 0.27

2014-2015 216 223 49.2% 0.26 0.21 0.31 0.01 0 0.05

2016-2017 247 192 56.3% 0.18 0.13 0.23 0.04 0.02 0.08

2010-2011 942 102 90.2% NA NA NA NA NA NA

2012-2013 988 56 94.6% 0.43 0.34 0.53 0 0 0

2014-2015 1005 39 96.3% 0.30 0.20 0.43 0 0 0

2016-2017 1010 34 96.7% 0.16 0.08 0.30 0 0 0

2010-2011 1230 875 58.4% NA NA NA NA NA NA

2012-2013 1310 795 62.2% 0.14 0.11 0.18 0.05 0.03 0.07

2014-2015 1397 708 66.4% 0.13 0.10 0.17 0.02 0.01 0.04

2016-2017 1388 717 65.9% 0.06 0.04 0.09 0.03 0.02 0.05

N=38All

Invasion Probability Extinction probability

WA, ID, 

NV, UT, 

CO,AZ, 

NE, IA, 

WI, MN, 

NY, NH, 

VT, NJ, 

OR, 

NM, KS, 

IL, IN, 

OH, PA, 

WV 

(N=22)

Early detection 

removal, invasion 

prevention, and 

elimination

MO, TN, 

VA, KY, 

MI 

(N=5)

Locate undetected 

populations, 

minimize damage

CA, TX, 

OK, AR, 

LA, MS, 

AL, GA, 

SC, NC, 

FL 

(N=11)

Reduce populations, 

minimize damage

0 to 2

3

4 to 5



Supplementary Figures 

 

Figure S1. Scatterplot of generalized linear mixed model predictions as a function of main effects. Note the 

fitted model showed that the three-way interaction between county area, invasion pressure, and time period was 

significant (p = 0.0041, Table S5), emphasizing that any effects of county area on occupancy probability depend 

on invasion pressure (how surrounded that county is by other occupied counties) and time period. This suggests 

that the effects of county area in affecting detection probability are weak (see the relationship on the plot on the 

left). 

 

 
 

Figure S2. Temporal trends in removal intensity by method. Total number of pigs removed during each year is 

plotted for each removal method. The vertical grey line indicates the first year of the program. This plot 

compares the temporal removal intensity across methods. 

 



 
 

Figure S3. Temporal trends in relative removal intensity by method. For each method, total number of pigs 

removed per year was rescaled relative to the maximum number of pigs removed in any one year. This plot 

shows the temporal trends within each method. 

 

 



 

Figure S4. Seasonality in removal intensity. Monthly counts of effort days and number of pigs removed for 3 

different removal methods. Data are rescaled to be proportions of the total. Each line represents the mean for 4 

years of data. Thin lines are 2010-2013 (pre-program), thick lines are 2014-2017 (during program). Top: 

proportion of total number of effort days. Middle: proportion of total number of pigs removed. Bottom: 

proportion of total take/effort ratios. 

 

 
 

Figure S5. Coefficients for the slope of the relationship between the three time periods and removal counts by 

state. Error bars are the 95% confidence intervals of the slope estimate.  Numbers on the right indicate state 

funding level classification during the first year of the program (2014). Schematic below the plot explains the 

meaning of negative and positive slopes relative to program objectives. The asterisk (*) indicates a theoretical 

threshold where removal rates may begin to decline once they are high enough to start strongly affecting 

abundance.  

 



 
 

Figure S6. Scatterplot of removal intensity slopes to pre-program estimates of pig density in each state. Error 

bars are the 95% confidence intervals of the slope estimate. Slope for each state is color-coded by its program 

classification in the first year of the program (2014). The horizontal dotted line shows no change in removal 

intensity as the program progresses. The dashed line indicates the predicted slope of the regression of the mean 

slope estimates (points) against state-level relative density estimates (X-axis). The slope was significantly 

positive with p < 0.05. 
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