6 research outputs found

    Rats bred for low and high running capacity display alterations in peripheral tissues and nerves relevant to neuropathy and pain

    Full text link
    IntroductionDiet and activity are recognized as modulators of nervous system disease, including pain. Studies of exercise consistently reveal a benefit on pain. This study focused on female rats to understand differences related to metabolic status and peripheral nerve function in females.MethodsHere, we investigated parameters of peripheral nerve function relevant to pain in rats selectively bred for high (high‐capacity runners; HCR) or low endurance exercise capacity (low‐capacity runners; LCR) resulting in divergent intrinsic aerobic capacities and susceptibility for metabolic conditions.ResultsLCR female rats have reduced mechanical sensitivity, higher intraepidermal nerve fiber density and TrkA‐positive epidermal axons, increased numbers of Langerhans and mast cells in cutaneous tissues, and a higher fat content despite similar overall body weights compared to female HCR rats. Sensory and motor nerve conduction velocities, thermal sensitivity, and mRNA expression of selected genes relevant to peripheral sensation were not different.ConclusionsThese results suggest that aerobic capacity and metabolic status influence sensory sensitivity and aspects of inflammation in peripheral tissues that could lead to poor responses to tissue damage and painful stimuli. The LCR and HCR rats should prove useful as models to assess how the metabolic status impacts pain.These results suggest that aerobic capacity and metabolic status influence sensory sensitivity and aspects of inflammation in peripheral tissues that could lead to poor responses to tissue damage and painful stimuli. The LCR and HCR rats should prove useful as models to assess how the metabolic status impacts pain.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139060/1/brb3780.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139060/2/brb3780_am.pd

    ATP-gated potassium channels contribute to ketogenic diet-mediated analgesia in mice

    No full text
    Chronic pain is a substantial health burden and options for treating chronic pain remain minimally effective. Ketogenic diets are emerging as well-tolerated, effective therapeutic strategies in preclinical models of chronic pain, especially diabetic neuropathy. We tested whether a ketogenic diet is antinociceptive through ketone oxidation and related activation of ATP-gated potassium (KATP) channels in mice. We demonstrate that consumption of a ketogenic diet for one week reduced evoked nocifensive behaviors (licking, biting, lifting) following intraplantar injection of different noxious stimuli (methylglyoxal, cinnamaldehyde, capsaicin, or Yoda1) in mice. A ketogenic diet also decreased the expression of p-ERK, an indicator of neuronal activation in the spinal cord, following peripheral administration of these stimuli. Using a genetic mouse model with deficient ketone oxidation in peripheral sensory neurons, we demonstrate that protection against methylglyoxal-induced nociception by a ketogenic diet partially depends on ketone oxidation by peripheral neurons. Injection of tolbutamide, a KATP channel antagonist, prevented ketogenic diet-mediated antinociception following intraplantar capsaicin injection. Tolbutamide also restored the expression of spinal activation markers in ketogenic diet-fed, capsaicin-injected mice. Moreover, activation of KATP channels with the KATP channel agonist diazoxide reduced pain-like behaviors in capsaicin-injected, chow-fed mice, similar to the effects observed with a ketogenic diet. Diazoxide also reduced the number of p-ERK+ cells in capsaicin-injected mice. These data support a mechanism that includes neuronal ketone oxidation and activation of KATP channels to provide ketogenic diet-related analgesia. This study also identifies KATP channels as a new target to mimic the antinociceptive effects of a ketogenic diet
    corecore