687 research outputs found
Recommendations From the International Consortium on Professional Nursing Practice in Long-Term Care Homes
AbstractIn response to the International Association of Gerontology and Geriatrics' global agenda for clinical research and quality of care in long-term care homes (LTCHs), the International Consortium on Professional Nursing Practice in Long Term Care Homes (the Consortium) was formed to develop nursing leadership capacity and address the concerns regarding the current state of professional nursing practice in LTCHs. At its invitational, 2-day inaugural meeting, the Consortium brought together international nurse experts to explore the potential of registered nurses (RNs) who work as supervisors or charge nurses within the LTCHs and the value of their contribution in nursing homes, consider what RN competencies might be needed, discuss effective educational (curriculum and practice) experiences, health care policy, and human resources planning requirements, and to identify what sustainable nurse leadership strategies and models might enhance the effectiveness of RNs in improving resident, family, and staff outcomes. The Consortium made recommendations about the following priority issues for action: (1) define the competencies of RNs required to care for older adults in LTCHs; (2) create an LTCH environment in which the RN role is differentiated from other team members and RNs can practice to their full scope; and (3) prepare RN leaders to operate effectively in person-centered care LTCH environments. In addition to clear recommendations for practice, the Consortium identified several areas in which further research is needed. The Consortium advocated for a research agenda that emphasizes an international coordination of research efforts to explore similar issues, the pursuit of examining the impact of nursing and organizational models, and the showcasing of excellence in nursing practice in care homes, so that others might learn from what works. Several studies already under way are also described
Uncoupling of ATP-Mediated Calcium Signaling and Dysregulated Interleukin-6 Secretion in Dendritic Cells by Nanomolar Thimerosal
Dendritic cells (DCs), a rare cell type widely distributed in the soma, are potent antigen-presenting cells that initiate primary immune responses. DCs rely on intracellular redox state and calcium (Ca(2+)) signals for proper development and function, but the relationship between these two signaling systems is unclear. Thimerosal (THI) is a mercurial used to preserve vaccines and consumer products, and is used experimentally to induce Ca(2+) release from microsomal stores. We tested adenosine triphosphate (ATP)-mediated Ca(2+) responses of DCs transiently exposed to nanomolar THI. Transcriptional and immunocytochemical analyses show that murine myeloid immature DCs (IDCs) and mature DCs (MDCs) express inositol 1,4,5-trisphosphate receptor (IP(3)R) and ryanodine receptor (RyR) Ca(2+) channels, known targets of THI. IDCs express the RyR1 isoform in a punctate distribution that is densest near plasma membranes and within dendritic processes, whereas IP(3)Rs are more generally distributed. RyR1 positively and negatively regulates purinergic signaling because ryanodine (Ry) blockade a) recruited 80% more ATP responders, b) shortened ATP-mediated Ca(2+) transients > 2-fold, and c) produced a delayed and persistent rise (≥ 2-fold) in baseline Ca(2+). THI (100 nM, 5 min) recruited more ATP responders, shortened the ATP-mediated Ca(2+) transient (≥ 1.4-fold), and produced a delayed rise (≥ 3-fold) in the Ca(2+) baseline, mimicking Ry. THI and Ry, in combination, produced additive effects leading to uncoupling of IP(3)R and RyR1 signals. THI altered ATP-mediated interleukin-6 secretion, initially enhancing the rate of cytokine secretion but suppressing cytokine secretion overall in DCs. DCs are exquisitely sensitive to THI, with one mechanism involving the uncoupling of positive and negative regulation of Ca(2+) signals contributed by RyR1
Adeno-associated virus gene therapy prevents progression of kidney disease in genetic models of nephrotic syndrome
Gene therapy for kidney diseases has proven challenging. Adeno-associated virus (AAV) is used as a vector for gene therapy targeting other organs, with particular success demonstrated in monogenic diseases. We aimed to establish gene therapy for the kidney by targeting a monogenic disease of the kidney podocyte. The most common cause of childhood genetic nephrotic syndrome is mutations in the podocyte gene NPHS2, encoding podocin. We used AAV-based gene therapy to rescue this genetic defect in human and mouse models of disease. In vitro transduction studies identified the AAV-LK03 serotype as a highly efficient transducer of human podocytes. AAV-LK03–mediated transduction of podocin in mutant human podocytes resulted in functional rescue in vitro, and AAV 2/9–mediated gene transfer in both the inducible podocin knockout and knock-in mouse models resulted in successful amelioration of kidney disease. A prophylactic approach of AAV 2/9 gene transfer before induction of disease in conditional knockout mice demonstrated improvements in albuminuria, plasma creatinine, plasma urea, plasma cholesterol, histological changes, and long-term survival. A therapeutic approach of AAV 2/9 gene transfer 2 weeks after disease induction in proteinuric conditional knock-in mice demonstrated improvement in urinary albuminuria at days 42 and 56 after disease induction, with corresponding improvements in plasma albumin. Therefore, we have demonstrated successful AAV-mediated gene rescue in a monogenic renal disease and established the podocyte as a tractable target for gene therapy approaches
Evidence for distinct coastal and offshore communities of bottlenose dolphins in the north east Atlantic.
Bottlenose dolphin stock structure in the northeast Atlantic remains poorly understood. However, fine scale photo-id data have shown that populations can comprise multiple overlapping social communities. These social communities form structural elements of bottlenose dolphin (Tursiops truncatus) [corrected] populations, reflecting specific ecological and behavioural adaptations to local habitats. We investigated the social structure of bottlenose dolphins in the waters of northwest Ireland and present evidence for distinct inshore and offshore social communities. Individuals of the inshore community had a coastal distribution restricted to waters within 3 km from shore. These animals exhibited a cohesive, fission-fusion social organisation, with repeated resightings within the research area, within a larger coastal home range. The offshore community comprised one or more distinct groups, found significantly further offshore (>4 km) than the inshore animals. In addition, dorsal fin scarring patterns differed significantly between inshore and offshore communities with individuals of the offshore community having more distinctly marked dorsal fins. Specifically, almost half of the individuals in the offshore community (48%) had characteristic stereotyped damage to the tip of the dorsal fin, rarely recorded in the inshore community (7%). We propose that this characteristic is likely due to interactions with pelagic fisheries. Social segregation and scarring differences found here indicate that the distinct communities are likely to be spatially and behaviourally segregated. Together with recent genetic evidence of distinct offshore and coastal population structures, this provides evidence for bottlenose dolphin inshore/offshore community differentiation in the northeast Atlantic. We recommend that social communities should be considered as fundamental units for the management and conservation of bottlenose dolphins and their habitat specialisations
Clinical Trial of Oral Nelfinavir before and during Radiation Therapy for Advanced Rectal Cancer
Purpose
Nelfinavir, a PI3-kinase pathway inhibitor, is a radiosensitizer which increases tumor
blood flow in preclinical models. We conducted an early-phase study to demonstrate
the safety of nelfinavir combined with hypofractionated radiotherapy (RT) and to
develop biomarkers of tumor perfusion and radiosensitization for this combinatorial
approach.
Patients and Methods
Ten patients with T3-4 N0-2 M1 rectal cancer received 7 days of oral nelfinavir (1250
mg bd) and a further 7 days of nelfinavir during pelvic RT (25 Gy/5 fractions/7 days).
Perfusion CT (p-CT) and DCE-MRI scans were performed pre-treatment, after 7
days of nelfinavir and prior to last fraction of RT. Biopsies taken pre-treatment and 7
days after the last fraction of RT were analysed for tumor cell density (TCD).
Results
There were 3 drug-related grade 3 adverse events: diarrhea, rash, lymphopenia. On
DCE-MRI, there was a mean 42% increase in median Ktrans, and a corresponding
median 30% increase in mean blood flow on p-CT during RT in combination with
nelfinavir. Median TCD decreased from 24.3% at baseline to 9.2% in biopsies taken
7 days after RT (P=0.01). Overall, 5/9 evaluable patients exhibited good tumor
regression on MRI assessed by Tumor Regression Grade (mrTRG).
Conclusions
This is the first study to evaluate nelfinavir in combination with RT without concurrent
chemotherapy. It has shown that nelfinavir-RT is well tolerated and is associated
with increased blood flow to rectal tumors. The efficacy of nelfinavir-RT versus RT
alone merits clinical evaluation, including measurement of tumor blood flow
Deletion of the Pichia pastoris KU70 Homologue Facilitates Platform Strain Generation for Gene Expression and Synthetic Biology
Targeted gene replacement to generate knock-outs and knock-ins is a commonly used method to study the function of unknown genes. In the methylotrophic yeast Pichia pastoris, the importance of specific gene targeting has increased since the genome sequencing projects of the most commonly used strains have been accomplished, but rapid progress in the field has been impeded by inefficient mechanisms for accurate integration. To improve gene targeting efficiency in P. pastoris, we identified and deleted the P. pastoris KU70 homologue. We observed a substantial increase in the targeting efficiency using the two commonly known and used integration loci HIS4 and ADE1, reaching over 90% targeting efficiencies with only 250-bp flanking homologous DNA. Although the ku70 deletion strain was noted to be more sensitive to UV rays than the corresponding wild-type strain, no lethality, severe growth retardation or loss of gene copy numbers could be detected during repetitive rounds of cultivation and induction of heterologous protein production. Furthermore, we demonstrated the use of the ku70 deletion strain for fast and simple screening of genes in the search of new auxotrophic markers by targeting dihydroxyacetone synthase and glycerol kinase genes. Precise knock-out strains for the well-known P. pastoris AOX1, ARG4 and HIS4 genes and a whole series of expression vectors were generated based on the wild-type platform strain, providing a broad spectrum of precise tools for both intracellular and secreted production of heterologous proteins utilizing various selection markers and integration strategies for targeted or random integration of single and multiple genes. The simplicity of targeted integration in the ku70 deletion strain will further support protein production strain generation and synthetic biology using P. pastoris strains as platform hosts
Association of germline variants in telomere maintenance genes (POT1, TERF2IP, ACD, and TERT) with spitzoid morphology in familial melanoma: A multi-center case series
Spitzoid morphology in familial melanoma has been associated with germline variants in
POT1, a telomere maintenance gene (TMG), suggesting a link between telomere biology and spitzoid
differentiation. The aim is to assess if familial melanoma cases associated with germline variants in TMG (POT1, ACD,
TERF2IP, and TERT ) commonly exhibit spitzoid morphology.Medicin
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
- …