45 research outputs found

    Underreporting and overreporting of hepatitis B at a tertiary hospital

    Get PDF
    Objective. To assess the level of underreporting and overreporting of hepatitis B infection at a tertiary hospital.Design. Retrospective record review.Setting. King Edward VIII Hospital, Durban.Main outcome measures. Hepatitis B notification was assessed. Underreporting was ascertained on the basis of the proportion of hepatitis B-positive laboratory results that were not notified. Overreporting was indicated by duplication of notifications and the reporting of patients who have not tested positive for hepatitis B.Results. 83.7% (95% confidence interval 79.4 - 88.0%) of patients with hepatitis B virus infection were not reported. no hospital outpatients were reported and 6% (95% confidence interval 0 - 12.6%) of the reported hepatitis B cases were not hepatitis B.Conclusion. Underreporting of hepatitis B virus infection is the result of an inadequate notification system at a health institution level. A new, user-friendly system of surveillance that actively monitors the reporting rate is recommended to improve the reporting rate and thus generates useful information

    N-Acetyltransferase 2 Genotypes among Zulu-Speaking South Africans and Isoniazid and N-Acetyl-Isoniazid Pharmacokinetics during Antituberculosis Treatment.

    Get PDF
    The distribution of N-acetyltransferase 2 gene (NAT2) polymorphisms varies considerably among different ethnic groups. Information on NAT2 single-nucleotide polymorphisms in the South African population is limited. We investigated NAT2 polymorphisms and their effect on isoniazid pharmacokinetics (PK) in Zulu black HIV-infected South Africans in Durban, South Africa. HIV-infected participants with culture-confirmed pulmonary tuberculosis (TB) were enrolled from two unrelated studies. Participants with culture-confirmed pulmonary TB were genotyped for the NAT2 polymorphisms 282C>T, 341T>C, 481C>T, 857G>A, 590G>A, and 803A>G using Life Technologies prevalidated TaqMan assays (Life Technologies, Paisley, UK). Participants underwent sampling for determination of plasma isoniazid and N-acetyl-isoniazid concentrations. Among the 120 patients, 63/120 (52.5%) were slow metabolizers (NAT2*5/*5), 43/120 (35.8%) had an intermediate metabolism genotype (NAT2*5/12), and 12/120 (11.7%) had a rapid metabolism genotype (NAT2*4/*11, NAT2*11/12, and NAT2*12/12). The NAT2 alleles evaluated in this study were *4, *5C, *5D, *5E, *5J, *5K, *5KA, *5T, *11A, *12A/12C, and *12M. NAT2*5 was the most frequent allele (70.4%), followed by NAT2*12 (27.9%). Fifty-eight of 60 participants in study 1 had PK results. The median area under the concentration-time curve from 0 to infinity (AUC0-∞) was 5.53 (interquartile range [IQR], 3.63 to 9.12 μg h/ml), and the maximum concentration (Cmax) was 1.47 μg/ml (IQR, 1.14 to 1.89 μg/ml). Thirty-four of 40 participants in study 2 had both PK results and NAT2 genotyping results. The median AUC0-∞ was 10.76 μg·h/ml (IQR, 8.24 to 28.96 μg·h/ml), and the Cmax was 3.14 μg/ml (IQR, 2.39 to 4.34 μg/ml). Individual polymorphisms were not equally distributed, with some being represented in small numbers. The genotype did not correlate with the phenotype, with those with a rapid acetylator genotype showing higher AUC0-∞ values than those with a slow acetylator genotype, but the difference was not significant (P = 0.43). There was a high prevalence of slow acetylator genotypes, followed by intermediate and then rapid acetylator genotypes. The poor concordance between genotype and phenotype suggests that other factors or genetic loci influence isoniazid metabolism, and these warrant further investigation in this population

    Drivers of Tuberculosis Transmission.

    Get PDF
    Measuring tuberculosis transmission is exceedingly difficult, given the remarkable variability in the timing of clinical disease after Mycobacterium tuberculosis infection; incident disease can result from either a recent (ie, weeks to months) or a remote (ie, several years to decades) infection event. Although we cannot identify with certainty the timing and location of tuberculosis transmission for individuals, approaches for estimating the individual probability of recent transmission and for estimating the fraction of tuberculosis cases due to recent transmission in populations have been developed. Data used to estimate the probable burden of recent transmission include tuberculosis case notifications in young children and trends in tuberculin skin test and interferon γ-release assays. More recently, M. tuberculosis whole-genome sequencing has been used to estimate population levels of recent transmission, identify the distribution of specific strains within communities, and decipher chains of transmission among culture-positive tuberculosis cases. The factors that drive the transmission of tuberculosis in communities depend on the burden of prevalent tuberculosis; the ways in which individuals live, work, and interact (eg, congregate settings); and the capacity of healthcare and public health systems to identify and effectively treat individuals with infectious forms of tuberculosis. Here we provide an overview of these factors, describe tools for measurement of ongoing transmission, and highlight knowledge gaps that must be addressed

    A four-month gatifloxacin-containing regimen for treating tuberculosis.

    Get PDF
    BACKGROUND: Shortening the course of treatment for tuberculosis would be a major improvement for case management and disease control. This phase 3 trial assessed the efficacy and safety of a 4-month gatifloxacin-containing regimen for treating rifampin-sensitive pulmonary tuberculosis. METHODS: We conducted a noninferiority, randomized, open-label, controlled trial involving patients 18 to 65 years of age with smear-positive, rifampin-sensitive, newly diagnosed pulmonary tuberculosis in five sub-Saharan African countries. A standard 6-month regimen that included ethambutol during the 2-month intensive phase was compared with a 4-month regimen in which gatifloxacin (400 mg per day) was substituted for ethambutol during the intensive phase and was continued, along with rifampin and isoniazid, during the continuation phase. The primary efficacy end point was an unfavorable outcome (treatment failure, recurrence, or death or study dropout during treatment) measured 24 months after the end of treatment, with a noninferiority margin of 6 percentage points, adjusted for country. RESULTS: A total of 1836 patients were assigned to the 4-month regimen (experimental group) or the standard regimen (control group). Baseline characteristics were well balanced between the groups. At 24 months after the end of treatment, the adjusted difference in the risk of an unfavorable outcome (experimental group [21.0%] minus control group [17.2%]) in the modified intention-to-treat population (1356 patients) was 3.5 percentage points (95% confidence interval, -0.7 to 7.7). There was heterogeneity across countries (P=0.02 for interaction, with differences in the rate of an unfavorable outcome ranging from -5.4 percentage points in Guinea to 12.3 percentage points in Senegal) and in baseline cavitary status (P=0.04 for interaction) and body-mass index (P=0.10 for interaction). The standard regimen, as compared with the 4-month regimen, was associated with a higher dropout rate during treatment (5.0% vs. 2.7%) and more treatment failures (2.4% vs. 1.7%) but fewer recurrences (7.1% vs. 14.6%). There was no evidence of increased risks of prolongation of the QT interval or dysglycemia with the 4-month regimen. CONCLUSIONS: Noninferiority of the 4-month regimen to the standard regimen with respect to the primary efficacy end point was not shown. (Funded by the Special Program for Research and Training in Tropical Diseases and others; ClinicalTrials.gov number, NCT00216385.)

    Incidence and geographic distribution of extensively drug-resistant tuberculosis in KwaZulu-Natal Province, South Africa

    Get PDF
    South Africa is experiencing a widespread drug-resistant tuberculosis epidemic, although data are limited regarding the current situation. This study finds that the extensively drugresistant tuberculosis (XDR-TB) incidence in KwaZulu-Natal increased to 3.5 cases/ 100,000 (776 cases) in 2011-2012. XDR-TB cases are widely distributed geographically, with the majority of districts experiencing a rise in incidence.This work was supported by: R01 AI089349, National Institutes of Health, NRG NSS (http://www.nih.gov/); 2007071, Doris Duke Charitable Foundation Clinical Scientist Development Award, NSS (http://www.ddcf.org/); 2007070, Doris Duke Charitable Foundation Clinical Scientist Development Award, NRG (http://www.ddcf.org/); K24 114444, K24 Career Development Award from the National Institute of Allergy and Infectious Diseases, NRG (http://www.niaid.nih.gov/Pages/default.aspx); P30 AI050409, Emory University Center for AIDS Research, NRG (http://www.cfar.emory.edu/); K23 AI083088, National Institutes of Health, JCMB (http:// www.nih.gov/); and P30 AI051519, Einstein- Montefiore Center for AIDS Research, JCMB (http:// www.einstein.yu.edu/centers/center-for-aidsresearch/).http://www.plosone.orgam201

    Host-Directed Therapies for tackling Multi-Drug Resistant TB – learning from the Pasteur-Bechamp debates

    Get PDF
    Tuberculosis (TB) remains a global emergency causing an estimated 1.5 million deaths annually. For several decades the major focus of TB treatment has been on antibiotic development targeting Mycobacterium tuberculosis (M.tb). The lengthy TB treatment duration and poor treatment outcomes associated with multi-drug resistant TB (MDR-TB) are of major concern. The sparse new TB drug pipeline and widespread emergence of MDR-TB signal an urgent need for more innovative interventions to improve treatment outcomes. Building on the historical Pasteur-Bechamp debates on the role of the ‘microbe’ versus the ‘host internal milieu’ in disease causation, we make the case for parallel investments into host-directed therapies (HDTs). A range of potential HDTs are now available which require evaluation in randomized controlled clinical trials as adjunct therapies for shortening the duration of TB therapy and improving treatment outcomes for drug-susceptible TB and MDR-TB. Funder initiatives that may enable further research into HDTs are described

    Towards host-directed therapies for tuberculosis

    Get PDF
    The treatment of tuberculosis is based on combinations of drugs that directly target Mycobacterium tuberculosis. A new global initiative is now focusing on a complementary approach of developing adjunct host-directed therapies. Despite the availability of effective antibiotics for tuberculosis (TB) for the past half century, it remains an important global health problem; there are ~9 million active TB cases and ~1.5 million TB-induced deaths per year (see the World Health Organization (WHO) Global Tuberculosis Report in Further information). Health services around the world face major barriers to achieving optimal outcomes from current TB treatment regimens. These barriers include: the spread of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB); complex and toxic treatment regimens for MDR-TB; HIV co-infection; pharmacokinetic interactions between TB drugs and antiretroviral drugs; relapse; permanent damage to lung and other tissues; long-term functional disability; immune reconstitution inflammatory syndrome (IRIS); and co-morbidity with non-communicable diseases such as diabetes and chronic obstructive airway diseases. Another fundamental problem is the long duration of TB drug treatment (6 months for drug-sensitive TB and at least 18 months for drug-resistant TB) to achieve a cure, owing to the presence of dormant Mycobacterium tuberculosis bacilli that are phenotypically resistant to current classes of anti-TB drugs, which can only target bacterial replication. There is therefore an urgent need for new TB treatments. However, the TB drug pipeline is thin1, 2. For the past 60 years, efforts to develop new treatments have focused on compounds and regimens that target M. tuberculosis directly. Recently, however, attention has focused on investigating a range of adjunct treatment interventions known as host-directed therapies (HDTs) that instead target the host response to infection. Here, we highlight the rationale for HDTs, the current portfolio of HDTs and their mechanisms of action, and a consortium-based approach to drive forward their evaluation in clinical trials
    corecore