125 research outputs found

    Mechanisms of Thermal Adaptation Revealed From the Genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii

    Get PDF
    We generated draft genome sequences for two cold-adapted Archaea, Methanogenium frigidum and Methanococcoides burtonii, to identify genotypic characteristics that distinguish them from Archaea with a higher optimal growth temperature (OGT). Comparative genomics revealed trends in amino acid and tRNA composition, and structural features of proteins. Proteins from the cold-adapted Archaea are characterized by a higher content of noncharged polar amino acids, particularly Gin and Thr and a lower content of hydrophobic amino acids, particularly Leu. Sequence data from nine methanogen genomes (OGT 15degrees-98degreesC) were used to generate IIII modeled protein structures. Analysis of the models from the cold-adapted Archaea showed a strong tendency in the solvent-accessible area for more Gin, Thr, and hydrophobic residues and fewer charged residues. A cold shock domain (CSD) protein (CspA homolog) was identified in M. frigidum, two hypothetical proteins with CSD-folds in M. burtonii, and a unique winged helix DNA-binding domain protein in M. burtonii. This suggests that these types of nucleic acid binding proteins have a critical role in cold-adapted Archaea. Structural analysis of tRNA sequences from the Archaea indicated that GC content is the major factor influencing tRNA stability in hyperthermophiles, but not in the psychrophiles, mesophiles or moderate thermophiles. Below an OGT of 60degreesC, the GC content in tRNA was largely unchanged, indicating that any requirement for flexibility of tRNA in psychrophiles is mediated by other means. This is the first time that comparisons have been performed with genome data from Archaea spanning the growth temperature extremes. from psychrophiles to hyperthermophile

    Year in review in Intensive Care Medicine, 2008: II. Experimental, acute respiratory failure and ARDS, mechanical ventilation and endotracheal intubation

    Get PDF
    SCOPUS: re.jinfo:eu-repo/semantics/publishe

    Décharges nanosecondes répétitives pulsées dans l'air à pression atmosphérique

    No full text
    Nanosecond Repetitively Pulsed (NRP) discharges in atmospheric pressure air have many potential applications. Spark NRP discharges have applications in plasma assisted combustion. These discharges tend to stabilize lean flames which produce less NOx. Furthermore, an increase of several hundreds of Kelvins in less than 20 ns has been observed following NRP spark discharges, which could be used to create nanomaterials. NRP glow discharges, while creating an important number of actives species such as atomic oxygen, do not heat the ambient gas, which allows them to be used in temperature-sensitive applications such as bio-decontamination. In the first part of this thesis, we validate experimentally the mechanism that was proposed to explain the ultrafast heating observed. Time-resolved measurements of the absolute densities of two excited states of nitrogen and of the gas temperature have been performed with calibrated Optical Emission Spectroscopy. The second part of the thesis deals with the NRP glow regime. We have shown that its existence depends on several parameters, gas temperature and pressure, voltage across the electrodes, inter-electrode distance, pulse duration, radius of curvature of the electrodes. This regime had not been observed for temperatures lower than 750 K so far. Thanks to a detailed parametrical experimental study and the analysis of the obtained results, we have succeeded in identifying the NRP glow regime at ambient temperature and we observe a new type of “multi-channel” glow regime.Les décharges Nanosecondes Répétitives Pulsées (NRP) dans l'air à pression atmosphérique ont de nombreuses applications potentielles. Ces applications dépendent de la nature des décharges NRP. Les décharges NRP spark stabilisent les flammes pauvres, qui émettent moins d’oxydes d’azote. Un chauffage ultrarapide de plusieurs milliers de degrés en une vingtaine de nanosecondes a également été observé dans de telles décharges, ce qui permettrait par exemple la production de nanomatériaux. Les décharges NRP glow ont l'avantage de produire un grand nombre d'espèces actives comme le radical O tout en échauffant très peu le gaz ambiant, ce qui les rend utilisables dans des applications sensibles à la température comme la bio-décontamination. Dans une première partie, nous validons expérimentalement le mécanisme chimique à l'origine du chauffage ultra-rapide grâce à des mesures résolues en temps de la densité absolue de deux états excités du diazote ainsi que des mesures de température du gaz. Dans un deuxième temps, nous montrons expérimentalement l'existence du régime glow à température ambiante, celui-ci n'ayant été observé jusqu’à présent que pour des températures supérieures à 750 K. En effet, nous avons démontré que son existence dépend de nombreux paramètres : température et pression du gaz, tension entre les électrodes, distance inter-électrodes, durée de l’impulsion de tension, rayon de courbure des électrodes. Grâce à une étude expérimentale paramétrique détaillée et à l’analyse des résultats obtenus, nous avons réussi à identifier les conditions permettant d’obtenir le régime NRP glow à température ambiante et un nouveau régime de décharge de type “multi-canal” a été mis en évidence

    Evaluation de la prise en charge aux urgences des patients en soins palliatifs terminaux (approche sociologique)

    No full text
    STRASBOURG-Medecine (674822101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Décharges nanosecondes répétitives pulsées dans l'air à pression atmosphérique

    No full text
    Les décharges Nanosecondes Répétitives Pulsées (NRP) dans l'air à pression atmosphérique ont de nombreuses applications potentielles. Ces applications dépendent de la nature des décharges NRP. Les décharges NRP spark stabilisent les flammes pauvres, qui émettent moins d oxydes d azote. Un chauffage ultrarapide de plusieurs milliers de degrés en une vingtaine de nanosecondes a également été observé dans de telles décharges, ce qui permettrait par exemple la production de nanomatériaux. Les décharges NRP glow ont l'avantage de produire un grand nombre d'espèces actives comme le radical O tout en échauffant très peu le gaz ambiant, ce qui les rend utilisables dans des applications sensibles à la température comme la bio-décontamination. Dans une première partie, nous validons expérimentalement le mécanisme chimique à l'origine du chauffage ultra-rapide grâce à des mesures résolues en temps de la densité absolue de deux états excités du diazote ainsi que des mesures de température du gaz. Dans un deuxième temps, nous montrons expérimentalement l'existence du régime glow à température ambiante, celui-ci n'ayant été observé jusqu à présent que pour des températures supérieures à 750 K. En effet, nous avons démontré que son existence dépend de nombreux paramètres : température et pression du gaz, tension entre les électrodes, distance inter-électrodes, durée de l impulsion de tension, rayon de courbure des électrodes. Grâce à une étude expérimentale paramétrique détaillée et à l analyse des résultats obtenus, nous avons réussi à identifier les conditions permettant d obtenir le régime NRP glow à température ambiante et un nouveau régime de décharge de type multi-canal a été mis en évidence.Nanosecond Repetitively Pulsed (NRP) discharges in atmospheric pressure air have many potential applications. Spark NRP discharges have applications in plasma assisted combustion. These discharges tend to stabilize lean flames which produce less NOx. Furthermore, an increase of several hundreds of Kelvins in less than 20 ns has been observed following NRP spark discharges, which could be used to create nanomaterials. NRP glow discharges, while creating an important number of actives species such as atomic oxygen, do not heat the ambient gas, which allows them to be used in temperature-sensitive applications such as bio-decontamination. In the first part of this thesis, we validate experimentally the mechanism that was proposed to explain the ultrafast heating observed. Time-resolved measurements of the absolute densities of two excited states of nitrogen and of the gas temperature have been performed with calibrated Optical Emission Spectroscopy. The second part of the thesis deals with the NRP glow regime. We have shown that its existence depends on several parameters, gas temperature and pressure, voltage across the electrodes, inter-electrode distance, pulse duration, radius of curvature of the electrodes. This regime had not been observed for temperatures lower than 750 K so far. Thanks to a detailed parametrical experimental study and the analysis of the obtained results, we have succeeded in identifying the NRP glow regime at ambient temperature and we observe a new type of multi-channel glow regime.CHATENAY MALABRY-Ecole centrale (920192301) / SudocSudocFranceF

    Where Are the Limits of Life?

    No full text
    corecore