356 research outputs found

    A comparison of boundary element and finite element methods for modeling axisymmetric polymeric drop deformation

    Get PDF
    A modified boundary element method (BEM) and the DEVSS-G finite element method (FEM) are applied to model the deformation of a polymeric drop suspended in another fluid subjected to start-up uniaxial extensional flow. The effects of viscoelasticity, via the Oldroyd-B differential model, are considered for the drop phase using both FEM and BEM and for both the drop and matrix phases using FEM. Where possible, results are compared with the linear deformation theory. Consistent predictions are obtained among the BEM, FEM, and linear theory for purely Newtonian systems and between FEM and linear theory for fully viscoelastic systems. FEM and BEM predictions for viscoelastic drops in a Newtonian matrix agree very well at short times but differ at longer times, with worst agreement occurring as critical flow strength is approached. This suggests that the dominant computational advantages held by the BEM over the FEM for this and similar problems may diminish or even disappear when the issue of accuracy is appropriately considered. Fully viscoelastic problems, which are only feasible using the FEM formulation, shed new insight on the role of viscoelasticity of the matrix fluid in drop deformation

    Indirect Detection of Kaluza-Klein Dark Matter from Latticized Universal Dimensions

    Full text link
    We consider Kaluza-Klein dark matter from latticized universal dimensions. We motivate and investigate two different lattice models, where the models differ in the choice of boundary conditions. The models reproduce relevant features of the continuum model for Kaluza-Klein dark matter. For the model with simple boundary conditions, this is the case even for a model with only a few lattice sites. We study the effects of the latticization on the differential flux of positrons from Kaluza-Klein dark matter annihilation in the galactic halo. We find that for different choices of the compactification radius, the differential positron flux rapidly converges to the continuum model results as a function of the number of lattice sites. In addition, we consider the prospects for upcoming space-based experiments such as PAMELA and AMS-02 to probe the latticization effect.Comment: 25 pages, 9 figures, LaTeX. Final version published in JCA

    A Brief Review on Dark Matter Annihilation Explanation for e±e^\pm Excesses in Cosmic Ray

    Full text link
    Recently data from PAMELA, ATIC, FERMI-LAT and HESS show that there are e±e^{\pm} excesses in the cosmic ray energy spectrum. PAMELA observed excesses only in e+e^+, but not in anti-proton spectrum. ATIC, FERMI-LAT and HESS observed excesses in e++ee^++e^- spectrum, but the detailed shapes are different which requires future experimental observations to pin down the correct data set. Nevertheless a lot of efforts have been made to explain the observed e±e^\pm excesses, and also why PAMELA only observed excesses in e+e^+ but not in anti-proton. In this brief review we discuss one of the most popular mechanisms to explain the data, the dark matter annihilation. It has long been known that about 23% of our universe is made of relic dark matter. If the relic dark matter was thermally produced, the annihilation rate is constrained resulting in the need of a large boost factor to explain the data. We will discuss in detail how a large boost factor can be obtained by the Sommerfeld and Briet-Wigner enhancement mechanisms. Some implications for particle physics model buildings will also be discussed.Comment: 22 pages, 6 figures. Several typoes corrected and some references added. Published in Mod. Phys. Lett. A, Vol. 24, No. 27 (2009) pp. 2139-216

    Encephalitis caused by a Lyssavirus in fruit bats in Australia.

    Get PDF
    This report describes the first pathologic and immunohistochemical recognition in Australia of a rabies-like disease in a native mammal, a fruit bat, the black flying fox (Pteropus alecto). A virus with close serologic and genetic relationships to members of the Lyssavirus genus of the family Rhabdoviridae was isolated in mice from the tissue homogenates of a sick juvenile animal

    Z(2)-Singlino Dark Matter in a Portal-Like Extension of the Minimal Supersymmetric Standard Model.

    Get PDF
    We propose a Z2-stabilized singlino () as a dark matter candidate in extended and R-parity violating versions of the supersymmetric standard model. interacts with visible matter via a heavy messenger field S, which results in a supersymmetric version of the Higgs portal interaction. The relic abundance of can account for cold dark matter if the messenger mass satisfies GeV. Our model can be implemented in many realistic supersymmetric models such as the next-to-minimal supersymmetric (SUSY) standard model and nearly minimal SUSY standard model

    Dark Matter in the Singlet Extension of MSSM: Explanation of Pamela and Implication on Higgs Phenomenology

    Full text link
    As discussed recently by Hooper and Tait, the singlino-like dark matter in the Minimal Supersymmetric Standard Model (MSSM) extended by a singlet Higgs superfield can give a perfect explanation for both the relic density and the Pamela result through the Sommerfeld-enhanced annihilation into singlet Higgs bosons (aa or hh followed by h>aah->a a) with aa being light enough to decay dominantly to muons or electrons. In this work we analyze the parameter space required by such a dark matter explanation and also consider the constraints from the LEP experiments. We find that although the light singlet Higgs bosons have small mixings with the Higgs doublets in the allowed parameter space, their couplings with the SM-like Higgs boson hSMh_{SM} (the lightest doublet-dominant Higgs boson) can be enhanced by the soft parameter AκA_\kappa and, in order to meet the stringent LEP constraints, the hSMh_{SM} tends to decay into the singlet Higgs pairs aaaa or hhhh instead of bbˉb\bar b. So the hSMh_{SM} produced at the LHC will give a multi-muon signal, h_{SM} -> aa -> 4 muons or h_{SM} -> hh -> 4 a -> 8 muons.Comment: Version in JHE

    Slightly Non-Minimal Dark Matter in PAMELA and ATIC

    Full text link
    We present a simple model in which dark matter couples to the standard model through a light scalar intermediary that is itself unstable. We find this model has several notable features, and allows a natural explanation for a surplus of positrons, but no surplus of anti-protons, as has been suggested by early data from PAMELA and ATIC. Moreover, this model yields a very small nucleon coupling, well below the direct detection limits. In this paper we explore the effect of this model in both the early universe and in the galaxy.Comment: 7 pages, 6 figures, v3: updated for new data, added discussion of Ferm

    Dark Matter Direct Detection Signals inferred from a Cosmological N-body Simulation with Baryons

    Full text link
    We extract at redshift z=0 a Milky Way sized object including gas, stars and dark matter (DM) from a recent, high-resolution cosmological N-body simulation with baryons. Its resolution is sufficient to witness the formation of a rotating disk and bulge at the center of the halo potential. The phase-space structure of the central galactic halo reveals the presence of a dark disk component, that is co-rotating with the stellar disk. At the Earth's location, it contributes to around 25% of the total DM local density, whose value is rho_DM ~ 0.37 GeV/cm^3. The velocity distributions also show strong deviations from pure Gaussian and Maxwellian distributions, with a sharper drop of the high velocity tail. We give a detailed study of the impact of these features on the predictions for DM signals in direct detection experiments. In particular, the question of whether the modulation signal observed by DAMA is or is not excluded by limits set by other experiments (CDMS, XENON and CRESST...) is re-analyzed and compared to the case of a standard Maxwellian halo, in both the elastic and the inelastic scattering scenarios. We find that the compatibility between DAMA and the other experiments is improved. In the elastic scenario, the DAMA modulation signal is slightly enhanced in the so-called channeling region, as a result of several effects. For the inelastic scenario, the improvement of the fit is mainly attributable to the departure from a Maxwellian distribution at high velocity.Comment: 39 page

    Absolute electron and positron fluxes from PAMELA/Fermi and Dark Matter

    Full text link
    We extract the positron and electron fluxes in the energy range 10 - 100 GeV by combining the recent data from PAMELA and Fermi LAT. The {\it absolute positron and electron} fluxes thus obtained are found to obey the power laws: E2.65E^{-2.65} and E3.06E^{-3.06} respectively, which can be confirmed by the upcoming data from PAMELA. The positron flux appears to indicate an excess at energies E\gsim 50 GeV even if the uncertainty in the secondary positron flux is added to the Galactic positron background. This leaves enough motivation for considering new physics, such as annihilation or decay of dark matter, as the origin of positron excess in the cosmic rays.Comment: Accepted by JCA

    The Leptonic Higgs as a Messenger of Dark Matter

    Full text link
    We propose that the leptonic cosmic ray signals seen by PAMELA and ATIC result from the annihilation or decay of dark matter particles via states of a leptonic Higgs doublet to τ\tau leptons, linking cosmic ray signals of dark matter to LHC signals of the Higgs sector. The states of the leptonic Higgs doublet are lighter than about 200 GeV, yielding large τˉτ\bar{\tau} \tau and τˉττˉτ\bar{\tau} \tau \bar{\tau} \tau event rates at the LHC. Simple models are given for the dark matter particle and its interactions with the leptonic Higgs, for cosmic ray signals arising from both annihilations and decays in the galactic halo. For the case of annihilations, cosmic photon and neutrino signals are on the verge of discovery.Comment: 34 pages, 9 figures, minor typos corrected, references adde
    corecore