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SUMMARY

A modified boundary element method (BEM) and the DEVSS-G finite element method (FEM) are
applied to model the deformation of a polymeric drop suspended in another fluid subjected to start-up
uniaxial extensional flow. The effects of viscoelasticity, via the Oldroyd-B differential model, are
considered for the drop phase using both FEM and BEM and for both the drop and matrix phases using
FEM. Where possible, results are compared with the linear deformation theory. Consistent predictions
are obtained among the BEM, FEM, and linear theory for purely Newtonian systems and between FEM
and linear theory for fully viscoelastic systems. FEM and BEM predictions for viscoelastic drops in a
Newtonian matrix agree very well at short times but differ at longer times, with worst agreement
occurring as critical flow strength is approached. This suggests that the dominant computational
advantages held by the BEM over the FEM for this and similar problems may diminish or even
disappear when the issue of accuracy is appropriately considered. Fully viscoelastic problems, which are
only feasible using the FEM formulation, shed new insight on the role of viscoelasticity of the matrix
fluid in drop deformation. Copyright © 2001 John Wiley & Sons, Ltd.

KEY WORDS: axisymmetric polymeric drop deformation; boundary element method; finite element
method; modeling

1. INTRODUCTION

Modeling the transient deformation of an immiscible polymeric drop within a polymeric fluid
in shear or extensional flow is of great interest for better understanding the effects of
processing on the morphology of a polymeric composite. There is much current interest in such
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composites, since the blending of a small amount of appropriate specialty polymer(s) to a
common bulk polymer can produce a new material with desirable properties. The final
properties of the product made from a polymeric blend are highly dependent on the
morphology of the dispersed phase(s), i.e. the size, shape and orientation of droplets. For
example, the permeability can be tailored by proper control of blend morphology [1–3].
Computational models can play an important role in the study of these systems, if robust and
accurate methods are available. This motivates the study presented here. First, we present a
comparison of two powerful numerical methods, the boundary element method (BEM) and the
finite element method (FEM), to model the dynamics of polymeric drop elongation in uniaxial
extensional flows. We directly compare the performance of these methods on several problems
of polymeric drops within Newtonian fluid. Second, we also present FEM computations of
polymeric drop extension in a polymeric matrix. Such results have not yet been obtained in
prior studies and shed new insight to the behavior of these systems.

Drop deformation has received considerable attention, beginning with the seminal work of
Taylor [4]. Taylor’s original contribution was to provide an analytical solution, accurate to
first-order in deformation, describing the deformation of a Newtonian drop sheared in another
Newtonian fluid. The theory was refined [5,6] and extended to other situations, such as viscous
drops surrounded by a viscoelastic shell [7] and double concentric viscous drops [8]. Excellent
reviews of these contributions can be found in Rallison [9] and Stone [10]. An extensive study
of the effects of the interface properties of viscous drops on the rheology of a dilute emulsion
was performed by Oldroyd [11,12]. Palierne [13,14] recently extended the work of Oldroyd to
described viscoelastic drops with interfacial tension. More recently, Delaby et al. [15–17] have
successfully applied the linear emulsion theory of Palierne to uniaxial extensional flow. A
different approach was taken by Roscoe [18] who used the work of Jeffery [19] on solid
ellipsoidal particles in a viscous flow to describe the deformation of viscoelastic particles.
While representing significant advances, the analytical solutions for drop behavior described in
these works are limited to small deformations.

The deformation of Newtonian drops in viscous extensional flows at low Reynolds number
was first studied numerically by Youngren [20] using BEM. For drops composed of Newtonian
fluids alone, this method involves only quantities at the boundaries and thereby reduces the
dimension of the spatial computational domain by one. The method has since been used
extensively by others to simulate the behavior of Newtonian drops in simple flow fields. Recent
studies have tackled more complicated flow problems and have incorporated additional
physical phenomena, e.g. the breakup of drops [21], the effects due to surfactants [22], and
elasticity of the interface [23]. Recently, the BEM was also used to simulate concentrated
emulsions of viscous drops in shear flow [24,25] and double concentric viscous drops [8].

Similar numerical studies of drop behavior involving polymeric fluids are much fewer in
number. Toose et al. [26–28] were among the first to model polymeric drop deformation in a
Newtonian matrix using the BEM. A finite difference scheme was used by Ramaswamy and
Leal [29,30] to study steady state drop deformations where either the drop or matrix was
viscoelastic. The first application of the FEM to transient, free-surface flows involving
viscoelasticity was that of Keunings [31]; this approach was subsequently applied to study
breakup of viscoelastic threads in a viscoelastic matrix [32], deformation of an inviscid
inclusion in a viscoelastic extensional flow [33], and drop deformation in uniaxial extensional
flow where one phase is viscoelastic and the other Newtonian [17].
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In the work presented here, we model viscoelastic drop deformation in start-up uniaxial
extensional flow using two different methods, the FEM and the BEM. Specifically, we
apply a framework similar to that Keunings [31] and employ the robust DEVSS-G FEM
[34,35] to develop a new method for describing viscoelastic moving-boundary flows. We
also directly employ the BEM developed by Toose [27] to compute the extension of vis-
coelastic drops. This collaborative study represents an opportunity for a direct comparison
of two very different methods. Such head-to-head comparisons of methods are relatively
infrequent, since each method involves a substantial investment in code development for
modeling problems of this complexity. Section 2 contains a description of the model system
and the governing equations for the viscoelastic drop deformation problem. Sections 3 and
4 are devoted to the numerical methods (DEVSS-G FEM and BEM) used to obtain
solutions to the governing equations. Results and conclusions are presented in Sections 5
and 6 respectively. The advantages and disadvantages of each method are assessed, and
new results are presented for viscoelastic drop deformations beyond the linear regime and
for cases of viscoelastic drop and matrix fluids.

2. PROBLEM STATEMENT

Shown schematically in Figure 1 is an isotropic, axisymmetric, non-Newtonian drop sus-
pended in an unbounded non-Newtonian matrix, which is subjected to a linear elongational
flow at t=0, where t denotes time. The drop center is placed at the stagnation point of the
external flow field, ��, which is defined by

Figure 1. Schematic of an axisymmetric drop suspended in an unbounded, neutrally buoyant matrix
subjected to uniaxial extension at t=0. Both phases (drop and matrix) are viscoelastic, in general, and

the drop is initially spherical with radius R0.
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where � j
� is the jth component of the velocity field with respect to a Cartesian coordinate

frame, {e1, e2, e3}, and �� is the strain rate of the extensional flow. The center of the drop is
located at the stagnation point of the external flow field, x=0. The domains occupied by
the non-Newtonian drop and matrix are denoted by Vd and Vm respectively. Along the
interface, S, between the domains, there acts a constant interfacial tension, �. The fluid is
incompressible, and buoyancy is considered to be absent, i.e. the densities of drop and
matrix are assumed to be equal. The initial drop configuration is taken to be a sphere with
radius R0.

The governing equations for the system described above include momentum and mass
conservation, a constitutive equation relating stresses to material deformations, a kinematic
relation describing the movement of the drop boundary, and appropriate initial and
boundary conditions. In general, momentum conservation can be expressed as [36]

�
����

�t �
+�� ·��� �

�
=�� ·T �+�geg (2)

where primes denote dimensional quantities, � is the fluid density, and g and eg are the
magnitude and direction of gravity respectively. Assuming fluid incompressibility, mass
conservation is given by

�� ·��=0 (3)

To recast the above using dimensionless variables, lengths are scaled by the initial drop
radius R0, time by the inverse strain rate, 1/�� , and stresses by the characteristic scale of
the external flow, �m�� , with �m representing the viscosity of the matrix phase. The non-
dimensional momentum and mass balances are then given by

�R0
2��

�m

���

�t
+� ·��

�
=� ·T+

�gR0

�m�� eg (4)

� ·�=0 (5)

respectively.
The dimensionless group on the left of Equation (4) is the Reynolds number, Re, which

is very small for viscous polymeric drops of small radii, e.g. for R0=O(10−5 m), the
Re=O(10−10). The dimensionless group on the right of Equation (4) is the ratio of Re/Fr,
with Fr as the Froude number, and is O(10−4). These scaling arguments suggest simplifica-
tion by neglecting inertia and gravity, thereby reducing Equation (4) to the following

� ·T=0 (6)
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Together, Equations (5) and (6) describe the behavior of the drop and matrix fluids during
flow. It remains to specify the constitutive behavior, as well as boundary and initial conditions.

Several integral and differential constitutive equations have been developed to relate the
state of stress in the fluid to current and past deformations and deformation rates [37,38]. In
this paper, we employ the Oldroyd-B model, although the numerical methods discussed later
can be extended to quite general rheological models. The Oldroyd-B model finds its origin in
polymer rheology and contains three parameters: a Newtonian solvent viscosity �s, a polymer
relaxation time �, and a polymer contribution to the viscosity �p [37]. The total fluid viscosity
is the sum of solvent and polymer contributions, i.e. �=�s+�p. Consistent with this splitting
into polymer and Newtonian solvent contributions, the total stress state of the fluid is
expressed as

T= −PI+ps�� +� (7)

where P is the isotropic pressure, I is the identity tensor, �� = (��+��T) is the rate-of-strain
tensor, and ps=�s/� is the solvent viscosity ratio. The extra-stress tensor, �, in Equation (7) is
given implicitly by

�+De�
�
=pp�� (8)

where De=�� � is the Deborah number, which is a time-scale ratio of the fluid response time,
�, to that imposed by the extensional flow, 1/�� , and pp=�p/� is the polymer viscosity ratio. In
Equation (8) �

�
is the upper-convected derivative of the extra stress tensor and is defined as [37]

�
�

�
��

�t
+� ·��−��T ·�−� ·�� (9)

The Oldroyd-B model is one of the simplest non-linear, time-dependent differential constitu-
tive equations. It attributes to the fluid a constant viscosity (no shear thinning) and first
normal stresses that increase quadratically with shear rate [38]. Equation (7) reduces to an
upper convected Maxwell (UCM) model when ps=0, and a Newtonian fluid is obtained when
De=0. Conversely, elastic solid behavior is approached as De��. Hence, the Deborah
number reflects departure from Newtonian behavior, with elastic effects becoming more
pronounced for larger De. While seeming to imply application to polymer solutions, the
Oldroyd-B relation can be successfully employed for polymer melts so long as the parameters
are fit properly to experimental data. To achieve a good fit to viscometric data, a spectrum of
relaxation times is typically required [38]. For each relaxation mode, an equation of the form
of Equation (8) applies, and the total stress response is the sum of each contribution. In this
work, only a single relaxation time is considered; additional modes could be incorporated in a
straightforward manner though with increased computational expense.

The above equations apply to both the drop and matrix fluid; we denote the drop phase
parameters by a subscript d and those of the exterior matrix by subscript m. Thus, the
Oldroyd-B parameters for the drop are the Deborah number, Ded=�d�� , the total viscosity �d,
made up of polymer, �pd, and solvent, �sd, contributions, and viscosity ratios ppd=�pd/�d and
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psd=1−ppd. The drop and matrix phases are related by the viscosity ratio, p=�d/�m, and the
elasticity ratio, De�=Ded/Dem=�d/�m.

The system of partial differential equations defined by Equations (5) and (6) require initial
conditions and boundary conditions. One boundary condition is specified by applying the
following nondimensional force balance [39] at the drop boundary, S (see Figure 1)

�mR0��
�

[n ·T ]s−�n=0 (10)

where n is a unit vector that is directed outward from the drop and normal to its surface S,
� is the dimensionless mean surface curvature and [ · ]S denotes the jump of the quantity
between the brackets over the interface S counted in the direction n. Equation (10) expresses
a jump in normal stress due to capillarity and implies continuity of tangential stress across the
drop boundary. The dimensionless group on the left side of Equation (10) is the capillary
number, Ca=�mR0�� /�, which represents the ratio between viscous and interfacial stresses at
the interface. This parameter has special meaning in the drop extension problem, namely the
exterior flow strengths can be classified as supercritical or subcritical depending on whether Ca
exceeds a critical value, Cac. When Ca�Cac, viscous stresses dominate over interfacial
stresses, and no steady drop shape can be attained under the given flow conditions.

A kinematic constraint is also imposed at the drop interface, S, which defines a material
surface. The trajectories of these points are followed using a Lagrangian representation of their
velocities:

u(x)−x� =0, for all x�S(t) (11)

where the dot denotes a material time derivative. This boundary condition Equation (11) is
implemented by representing the drop boundary by a scalar function, F=0. Evolution of the
moving surface is then related to the local velocity field by requiring the material derivative of
F to be zero [40]

�F
�t

+� ·�F=0 (12)

Far away from the drop, the exterior flow approaches that of pure uniaxial extension

����, as �x ��� (13)

Here, we assume axisymmetry, so that a single quadrant of the problem can be considered. The
following boundary conditions are imposed along the symmetry planes corresponding to the
drop’s extensional axis (y=z=0) and mid-plane (x=0)

n ·�=0 (14)

n ·T ·t=0 (15)
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Physically, Equation (14) enforces no fluid flow across the planes of symmetry, while Equation
(15) prevents any tangential stresses from acting along the planes.

For the evolution Equations (8) and (12), initial conditions are required. For the interface,
S, it is natural to start with a spherical shape. The extra stress tensor, �, is assigned an isotropic
stress distribution

�(0)=QI (16)

with Q constant and equal to zero. This corresponds to a stress state where the fluid is initially
everywhere at rest.

3. DEVSS-G FINITE ELEMENT METHOD

The simulation of viscoelastic fluid flow by the FEM has progressed considerably over the past
decade. In short, past research has found that the traditional Galerkin FEM readily breaks
down for problems having even small amounts of viscoelasticity (i.e. small De). For creeping
flows, this is due in part to the onset and propagation of mesh-sized instabilities, which occur
as the governing equations change type from elliptic to hyperbolic [41,42]. This occurs as De
is increased due to approximation errors in the numerical method. Another issue which
plagued early viscoelastic finite element simulations and which has since been explained is the
existence of a compatibility constraint or inf–sup condition for the velocity and extra stress
unknowns [34]. Similar to the LBB condition for velocities and pressures in purely Newtonian
problems, the discrete representation of extra stresses is required at more nodes internal to an
element than the number of velocity nodes along the element boundary. A final complicating
feature of viscoelastic flows is the transport of momentum by convection arising from the
constitutive behavior of the fluid, i.e. the � ·�� term in Equation (9). While only creeping flows
are considered in this work, the problems associated with momentum convection are
analogous to those encountered in flows where inertial effects are significant [43]. As De is
increased, convective momentum transport plays an increasingly important role, and Galerkin
FEM, which is known to suffer from oscillations when applied to strong convective flows, no
longer gives credible results. Taken together, these issues comprise what is commonly called the
‘high Weissenberg number problem’, where for steady flows, the Weissenberg number is
analogous to the Deborah number in transient flows.

To deal with these issues, several variations of the FEM have been devised. An excellent
chronology with details of each variation is provided in the recent review by Baaijens [34]. For
reasons discussed at length in the review, a variant of FEM known as the discrete elasticvis-
cous stress-splitting method with continuous interpolation of the velocity gradient, hereafter
referred to simply as the DEVSS-G FEM, is adapted to the drop deformation problem
considered here. The method is based on the idea of a mixed formulation which splits the
viscous and elastic components of stress and introduces a continuous approximation, G, of the
numerically discontinuous velocity gradient tensor, ��. The numerical difference between G
and �� is used to preserve the elliptic character of the momentum equation and thereby
circumvent the inf–sup condition for velocity and extra stress. Moreover, G is also used in
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place of �� in Equation (9). Streamline upwinding [44] is applied to the constitutive equation,
Equation (8), to stabilize convective momentum transport. This method has successfully been
applied to find solutions for relatively high values of De and can be applied to a broader class
of constitutive equations than those allowed with other FEMs based on stress splitting [34,35].
Applying the DEVSS-G FEM to the problem considered in this work, the governing equations
of Section 2 take the following form:

� ·T=	� · [G+GT− (��+��T)] (17)

� ·�=0 (18)

�+De�
�
=G+GT (19)

G=�� (20)

�F
�t

+� ·�F=0 (21)

where Equations (17) and (19) are the modified forms of Equations (6) and (8) respectively.
Equation (20) is an identity for G. When a polymeric solution or purely Newtonian fluid is
modeled, the solvent viscosity is non-zero (ps�0) in the Oldroyd-B constitutive law employed
here, and no additional numerical stabilization is needed. For this case, the parameter 	 is set
to zero. For the case of modeling the flow of a purely polymeric fluid (i.e. a polymer melt), the
solvent viscosity is zero (ps=0), and regularization of the momentum equation is needed to
preserve its ellipticity. Under these conditions, 	 is set to unity, and the difference between the
discrete (discontinuous) approximation of the velocity gradient tensor, ��, and its continuous
approximation, G, (obtained from a least-squares solution of Equation 20) is added numeri-
cally to the momentum balance via Equation (17).

3.1. Spatial discretization

The governing equations (17)– (21) are recast as the following strong-form weighted residual
equations:

Rm
i =

�
�

�iek ·(−� ·T+	� · [G+GT− (��+��T)]) d� (22)

R c
i =

�
�


 i(� ·�) d� (23)

R f
i =

�
�

�� iekel :
�

�+��
�
− (G+GT)

�
d� (24)
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Rg
i =

�
�

�iekel : (G−��) d� (25)

RS
i =

�
�

� i��F
�t

+� ·�F
�

d� (26)

where subscripts m, c, f, g and S refer to the momentum, continuity, fluid constitutive, velocity
gradient and kinematic equations respectively. Superscript i refers to a node associated with
the basis functions defined over the discretized domain. The integrals are taken over either the
problem domain, ��Vd�Vm, or the free boundary, ��Vd�Vm. The �i, 
 i, �i and � i are the
basis functions for velocity, pressure, extra stress and velocity gradient, and boundary shape
respectively.

The overbar on �i in Equation (24) reflects implementation of streamline upwinding [44]
where

�� i=�i+h� ·��i

The coefficient, h, is a constant over each element, evaluated to be proportional to the average
dimension of the element as h= (0.1) (Lengthelem+Widthelem)/2.

The divergence of the total stress tensor, on the right-hand-side of Equation (22), is
integrated by parts and the divergence theorem applied to yield weak-form residuals [45]. The
boundary integral that results allows a direct substitution of the natural boundary conditions
given by Equations (10) and (15). Direct evaluation of the second derivatives of drop surface
shape, associated with the dimensionless mean curvature, �, in Equation (10), are avoided by
integrating the boundary integral by parts as described by Ruschak [46]. Essential boundary
conditions for the velocity, Equation (14), are enforced along the symmetry planes.

Discrete approximations to the dependent variables are made using basis functions selected
from the same function space as the test functions used to form the corresponding weighted
residuals, i.e.

�k= �
N1

j=1

�k, j�j(x) (27)

p= �
N3

j=1

pj

j(x) (28)

�k= �
N2

j=1

�k, j�j(x) (29)

Gk= �
N2

j=1

Gk, j�j(x) (30)

H= �
NH

j=1

Hj�j(x) (31)
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Subscript k reflects the kth component of a vector or tensor. We choose to solve this particular
problem in a spherical coordinate system (r, �, ) whose origin is defined at the drop center.
For velocities, k=r or � ; for extra stresses, k=rr, r�, �� or  ; and for velocity gradients,
k=rr, r�, �r, �� or . The coefficients within the summations preceding the basis functions
comprise the time-dependent unknowns.

A mixed set of basis (test) functions is chosen to ensure the LBB compatibility conditions
[43]. Consistent with implementation of the DEVSS-G FEM as reported by Baaijens [34],
piecewise-continuous, biquadratic polynomials (�i) are chosen for velocities, and piecewise-
continuous, bilinear polynomials (�i) are used for the velocity gradients and extra stresses.
Rather than using discontinuous, bilinear polynomials for pressure [34], we employ discontin-
uous, linear polynomials (
 i), since these involve fewer pressure degrees of freedom and have
been used quite successfully in Newtonian fluid flows [43]. Finally, piecewise-continuous,
quadratic basis functions (� i) are used to represent the drop boundary position, where the
function defining the drop surface is represented as

F=r−H(�, t) (32)

This representation is always single-valued in the co-ordinate system employed here and allows
for simple interface tracking using the method of spines [47]. Corresponding to this choice of
basis functions, N1 represents the number of velocity nodes in the computational domain (nine
per element), N2 is the number of extra stress and velocity gradient nodes (four per element),
N3 is the number of pressure nodes (three within each element), and NH represents the number
of nodes defining the drop boundary (three per boundary element).

3.2. Viscoelastic fluid– fluid interface

An important implementation issue for this problem is pointed out by the force balance across
the drop surface, Equation (10). Clearly, tangential stresses must be continuous; however,
normal stresses are discontinuous at the surface due to the contributions of surface tension.
Fortuitously, these requirements are easily satisfied for Newtonian fluids using standard
Galerkin finite element discretizations. Important in these implementations is that only
continuity of the velocity field is imposed by construction of the solution approximation, e.g.
via Equation (27) above; the stress tensor of the Newtonian fluid is expressed in terms of
pressure and velocity derivatives, both of which can be constructed to be discontinuous across
element boundaries. For example, the normal stress jump is easily accommodated using
piecewise-discontinuous pressure representations, and the continuity of tangential stresses is
naturally satisfied by the stress-divergence weak form of the momentum equations. For the
DEVSS-G formulation, employed here for viscoelastic fluids, the direct discretization of the
extra stress tensor is required. While it may seem reasonable to allow the extra stress tensor
components to be continuous across the interface, as the construction of Equation (29) implies,
the requirements of the force balance stated by Equation (10) are not so stringent. In fact,
forcing all components of the stress tensor to be continuous overspecifies the problem and can
lead to significant difficulties. We demonstrate this formulation issue by comparing results
obtained with the formulation of Equation (29), which implicitly forces continuity of all the
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extra stresses across the interface, with the correct formulation, in which extra degrees of
freedom are added to the discretization to allow for discontinuity of the extra stress and
velocity gradient components at the drop interface. Figure 4 shows a comparison of the extra
stress components along a mesh spine (� fixed and r varying) for a viscoelastic drop
deformation computation using both continuous and discontinuous extra stresses. The slight
shift in values is due in part to the slightly different times at which the values were taken.
Clearly noticeable is the presence of wiggles near the drop boundary (r	1.0) when continuity
is enforced for each extra stress component. The deleterious effects on drop deformation
predictions are shown in Figure 5 for the same drop extension calculation. For continuous
extra stresses, wiggles eventually produce oscillations in drop strain and lead to convergence
failure at a very short time. When the stresses are allowed to be discontinuous across the drop
boundary, drop deformation was smooth, and solutions were possible to very long times
(t�3.5). All ensuing results employ the formulation with discontinuous extra stresses and
velocity gradients at the drop boundary.

3.3. Temporal discretization

The approximations in Equations (27)– (31) are substituted into the weak-form residual
equations, which are then evaluated using 3×3-point Guassian quadrature, to yield a set of
ordinary differential and algebraic equations (DAE) for the unknowns. Expressing the degrees
of freedom compactly as a single unknowns vector, y, allows the discretized system to be
written as follows

M
dy
dt

=F(y) (33)

where F consists of the steady state form of Equations (22)– (26), and M is the mass matrix
containing the coefficients of the time derivatives. M is singular due to the absence of explicit
time derivatives for the velocities, velocity gradients and pressure. To integrate this set of
DAEs in time, we employ a fully implicit, second-order accurate trapezoid scheme [43]. When
applied in conjunction with an Adams–Bashforth predictor, a variable time step based on the
difference between the predictor and the actual solution leads to fewer time steps and a
reduction in overall computation time. The time-dependence of the basis functions resulting
from the deforming mesh is accounted for in a consistent manner as prescribed by Lynch [48].
The resulting system of non-linear equations is solved using Newton’s method [49] and a direct
banded matrix solver.

3.4. Boundary element method

The BEM is also used to solve the governing equations of this problem. We employ the
method previously developed and applied by Toose et al. [26–28]. The interested reader should
consult these references for details; only a brief overview of the method is presented here.

The BEM is formulated in terms of integral representations of the flow field; we assume the
fluid to be Newtonian outside of the drop and viscoelastic (Oldroyd-B) inside the drop. A
solution for the velocity at time t can be constructed in terms of boundary integral equations
[50]. Following Ladyzhenskaya [51], the integral representation for the velocity is given by [28]
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�(x)+ (1−ps)
�

S

n : K(�(y)−�(x)) dSy=��(x)+
�

V d

� ·� ·J dy+
�

S

�n ·J dSy (34)

where x denotes the spatial coordinates of the problem, y is a dummy variable of integration,
and J and K are the Green’s functions for the Stokes problem [50]

J=
1

8�

� I
�r �+

rr
�r �3
�

, K= −
3

4�

rrr
�r �5

with r=x−y. Since the flow problem remains axisymmetric the dimension of the computa-
tional problem can be reduced by transforming Equation (34) to cylindrical co-ordinates [27].
The presence of the non-Newtonian stress, however, makes it impossible to reduce the problem
to one dimension as is possible for a purely Newtonian drop [9]. This implies that the
computational effort required to solve non-Newtonian problems is considerably higher than
for corresponding Newtonian problems. However, only the volume of the drop needs to be
discretized, since the outer fluid is assumed to be Newtonian.

The computations are carried out by defining a mesh of points along the surface of the drop
S as well as a set of discrete collocation points in the internal domain Vd. The extra stresses
and velocities are specified at these collocation points to permit computation of the viscoelastic
response of the drop. At the start of the simulation, the extra stresses are initialized per
Equation (16), and the corresponding velocity field is calculated using the boundary integral
formulation. The time evolution of the non-Newtonian axisymmetric drop is carried out using
an explicit, forward Euler scheme as follows: using the velocity given at time t and the
evolution equation (12), the new positions of the collocation points are calculated to obtain the
shape of the drop at t+�t. Clustering of the moving boundary nodes at the drop surface is
reduced by constraining their motion to the direction normal to the boundary; interior grid
points are interpolated between the center axis and the new boundary position. Integrating
Equation (8) in time yields and extra stress tensor at the new time level. With this new stress
tensor and shape of the boundary, a new velocity field at time level t+�t can be calculated
from Equation (34). At this point all of the information describing the state of the drop— the
position of collocation points and the velocity and non-Newtonian stresses at these points—
has advanced one time step. Repeating this explicit time integration procedure gives the
evolution of the stress tensor, the velocity field, and the shape of the drop.

4. RESULTS

We carry out the FEM computations on a domain of finite extent, approximating a drop
within an unbounded matrix. For most of the results discussed here, we apply the condition
expressed in Equation (13) as a Dirichlet condition on the outer boundary of the matrix, which
is given a circular shape and extends beyond the initial drop size by a factor of 10. We employ
meshes of rectangular elements in (r, �)-space with a typical mesh consisting of 16 elements in
the radial dimension within the drop, 24 elements in the radial dimension within the matrix,
and 24 elements in the angular dimension; this mesh is shown in Figure 2 and comprises a total
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Figure 2. Typical mesh used for the FEM. (Top) The full mesh consists of 16×24×24 (drop
radial×matrix radial×angular) elements and represents 20415 degrees of freedom. The matrix extends
10 drop radii to approximate unboundedness. (Bottom) The drop is initially spherical and set to have

unit radius. Grading is used in the drop and matrix domains.
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of 20415 degrees of freedom. The meshes are graded toward the drop boundary, the outer
matrix boundary, and the symmetry axes in order to resolve the steep velocity and stress
gradients that can occur in these regions. Slightly more or less refined meshes were used to
balance economy with accuracy, and mesh dimensions are given in the Figure captions. The
implicit time integration used with the FEM does not impose any stability limits and easily
allows variable time steps to be taken. Simulations were started with an initial time step
�t=10−4, and the error criterion for time step size adjustment was set to 10−3 [43].
Typically, on the order of 100 time steps were needed to reach a dimensionless time of
t=2.0. The convergence quality of this degree of spatial and temporal resolution and extent
of matrix domain was established for a severe case as described in detail in Section 4.1.2.

The BEM employed here naturally satisfies the far-field boundary condition of Equation
(13). In addition, owing to the Green’s function formulation of the BEM, only the drop
surface need be discretized for Newtonian fluids; consideration of a viscoelastic drop re-
quires an interior discretization, as described previously. For the computations carried out
in this study, we employ a mesh consisting of nine radial nodes and 32 angular nodes;
see Figure 3. The time step size for the explicit integration scheme used with the BEM
was constrained to ensure temporal stability. We employed a time step of �t=0.005, so
400 time steps were required to reach t=2.0. Convergence characteristics of the BEM

Figure 3. Typical mesh used for the BEM. The mesh of triangles has dimensions of 9×32 (radial×an-
gular) elements.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 837–864



MODELING AXISYMMETRIC DROP DEFORMATION 851

Figure 4. Extra stress components for UCM drop in UCM matrix with p=1.0, Ded=0.1, Dem=0.1 and
Ca�� at t=0.0075 plotted versus radial position along the spine defined by �=90°. Components that
are continuous across the drop boundary are shown by dashed curves (---), and discontinuous compo-
nents are shown as solid curves (— ). A coarse mesh of 8×8×10 elements (drop radial×matrix

radial×angular) was used.

are discussed at length in [28]. We also address accuracy and convergence issues in Section
4.1.2.

The following sections present results obtained using the FEM and BEM described
previously for the start-up uniaxial extension of a droplet. The purpose of this section is
twofold: first, to compare the performance of the two methods and, second, to assess the
physics of these flows, especially the effects of viscoelasticity. Both transient evolutions and
steady states are assessed by considering both supercritical (Ca�Cac) and subcritical (Ca

Cac) flows under a number of different scenarios.
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Figure 5. Drop strain, L/L0, versus dimensionless time (Hencky strain of matrix fluid) for the UCM/
UCM drop/matrix system of Figure 4.

4.1. Drops within a Newtonian matrix

Computing the dynamics of drops suspended within a Newtonian matrix is readily accom-
plished using either the FEM or the BEM. Here, we consider several scenarios and compare
results predicted by both approaches.

4.1.1. Newtonian drops within a Newtonian matrix. To begin, a purely Newtonian system
(drop/matrix) having no interfacial tension (Ca��) is considered. The only relevant rheolog-
ical parameter in this case is the viscosity ratio, p=�d/�m. Figure 6 compares transient drop
deformations for three different viscosity ratios predicted by the FEM and BEM with the
linear theory (LT) of Delaby et al. [16], who employed small deformation theory to predict
viscoelastic drop deformation in elongational flows. In the Figure, drop strain, L/L0, is plotted
as a function of dimensionless time, t=�� t �, or the Hencky strain of the matrix, � [38]. Without
interfacial tension, the drops reach no steady shape but instead deform passively. Very close
agreement is observed for the three approaches in the time interval shown. The agreement for
large drop deformations associated with p=0.5 (L/L0�5 at t=1.5) reflects the ability of the
FEM and BEM to handle significant mesh distortions.

Including sufficient interfacial tension so that Ca
Cac leads to steady drop shapes at long
times which reflect the balance between viscous and interfacial forces. In addition to the
viscosity ratio, p, the capillary number, Ca, now plays a role. The critical capillary number falls
between 0.10
Cac
0.15 for a wide range of viscosity ratios in Newtonian systems. We
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Figure 6. Drop strain, L/L0, versus dimensionless time for Newtonian drop in Newtonian matrix with
Ca��. Solid curves show FEM results, dashed curves show BEM results and symbols show results
from LT for three viscosity ratios: (�) p=0.5; (�) p=1.0; and (�) p=2.0. The FEM mesh had

16×24×16 elements, and the BEM mesh had 32 angular elements.

consider several combinations of capillary number and viscosity ratio in Figure 7. The
capillary number is fixed at Ca=0.05 for several values of the viscosity ratio in the
computations represented in Figure 7(a)– (c). The viscosity ratio is set at unity, p=1.0, while
the capillary number is varied for the simulations shown in Figure 7(d)– (f). In all instances,
the FEM and BEM results agree quite well for the entire drop deformation, and good
agreement with linear theory is observed for the early stages of drop strain. However, linear
theory consistently under predicts steady state deformation compared with the results from the
non-linear numerical calculations. As might be expected from small-deformation analysis, the
deviation between linear theory and the numerical predictions increases directly with the
amount of drop deformation. For example, with p=1.0, the Ca=0.025, 0.05, and 0.10 curves
of Figure 7(d)– (f) exhibit differences in steady-state L/L0 of approximately 0.004, 0.02 and
0.14 with corresponding deviation percentages of 0.4, 1.8 and 10.3 respectively. Taken
together, these results establish the accuracy and applicability of the FEM and BEM
computations to predict the behavior of Newtonian systems and underscore the limitation of
linear theory to accurately describe only small drop deformations.

4.1.2. Viscoelastic drops within a Newtonian matrix. Next, we consider the simulation of a
polymeric drop described by the Oldroyd-B constitutive law within a Newtonian exterior flow.
Figure 8 shows results for a drop Deborah number of Ded=1.0, equal polymer and solvent
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Figure 7. Drop strain, L/L0, versus dimensionless time for Newtonian/Newtonian systems comparing
FEM (— ), BEM (---) and LT (�). Holding Ca=0.05, viscosity ratios are compared: (a) p=0.5;
(b) p=1.0; and (c) p=2.0. Holding p=1.0, different values of Ca are compared: (d) Ca=0.025;
(e) Ca=0.05; and (f) Ca=0.10. The FEM mesh had 16×24×16 elements, and the BEM mesh had

32 angular elements.
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Figure 8. Drop strain, L/L0, versus dimensionless time for Oldroyd-B drops in a Newtonian matrix
having psd=0.5 and Ca=0.05. Curves are for FEM results: (---) p=0.5; (— ) p=1.0; and (– – – )
p=2.0. Symbols are for BEM results: (�) p=0.5; (+ ) p=1.0; and (�) p=2.0. (a) and (b) differ only
in the amount of time shown. A FEM mesh of 16×24×32 elements and a BEM mesh of 9×32

elements were used.
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contributions to the drop viscosity, i.e. psd=ppd=0.5, a subcritical capillary number of
Ca=0.05, and drop-to-matrix viscosity ratios of p=0.5, 1.0 and 2.0. Results obtained with
the FEM are shown via curves, and boundary element predictions are represented by symbols.
Drop evolution over early times is shown in Figure 8(a) and very good agreement is obtained
from the beginning of deformation to just before a steady state is reached at t	0.5. The
continuing evolution of drop length for the same cases at later times is shown in Figure 8(b).
Interestingly, the FEM predicts an overshoot in drop strain prior to reaching steady state drop
elongation, whereas the BEM shows the steady state to have been reached montonically.

This same trend is observed when the drop-to-matrix viscosity ratio is set to unity, p=1.0,
and the capillary number is varied between Ca=0.025, 0.05 and 0.10, as shown in Figure 9.
Finite element computations are represented by solid curves, while boundary element results
are shown with dotted curves. Again, Figure 9(a) shows early times, during which both
methods predict very similar results. As in the prior computations, long-term behaviors differ
significantly; see Figure 9(b). At subcritical capillary numbers, the FEM predicts an overshoot
in elongation prior to attaining the steady state, in contrast to the boundary element results,
which show a monotonic approach to steady state. The difference between the two methods
becomes even more pronounced when the critical capillary number is approached: Figure 9(b)
shows that the BEM predicts the conditions at Ca=0.10 to be supercritical, while the finite
element results predict this condition to be subcritical.

To further examine the discrepancy between the predictions by these two methods, we
repeated the finite element calculations for the Ca=0.10 case under significantly increased
levels of spatial and temporal refinement for much higher accuracy. Specifically, the meshing
was increased from 16×24×32 elements (radial dimension within the drop×radial dimen-
sion within the matrix×angular dimension) comprising a total of 27039 degrees of freedom to
24×48×70 elements comprising a total of 103719 degrees of freedom, the error criterion for
time step size selection in the trapezoid rule was reduced from 10−3 to 10−4, and potential
artifacts associated with upwind stabilization were removed from the new computation by
setting h=0 in Equation (24). The FEM computation using this fine mesh is compared with
the original computation shown in Figure 9(b) for the Ca=0.10 case in Figure 10. The
resulting transient strain, L/L0, for the fine-mesh calculation was at all times within 0.2 per
cent of the original calculation. A similar refinement was made with the BEM for the
Ca=0.10 case in which the interior mesh of 9×32 points (radial×angular) was increased to
24×64 points and the time step size decreased from 0.005 to 0.002. These two computations
are also shown in Figure 10. The transient strain computed using increased refinement for the
BEM is shifted significantly closer to the that predicted by the FEM, although the BEM results
still indicate this case to be supercritical. A detailed discussion on the discrepancy between the
predictions by the two methods is presented in Section 5.

4.2. Drops within a �iscoelastic matrix

In this section, we consider cases where the exterior fluid is viscoelastic. Such cases cannot be
represented by the BEM employed here but are handled in a straightforward manner by the
FEM.
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Figure 9. Drop strain, L/L0, versus dimensionless time for Oldroyd-B drops in a Newtonian matrix
having psd=0.5 and p=1.0. Solid curves (— ) denote FEM results, and dashes curves (---) are BEM
results. (a) and (b) differ in the amount of time shown. A FEM mesh of 16×24×32 elements and a

BEM mesh of 9×32 elements were used.
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Figure 10. Drop strain, L/L0, versus dimensionless time for the Ca=0.10 results of Figure 9 at two mesh
refinements. The solid curves (— ) are the preceding results, and the dashed curves (---) have the

following mesh dimensions: BEM (upper curve), 4×64; FEM (lower curve), 24×48×70.

4.2.1. Newtonian drops within a �iscoelastic matrix. In this section we consider the exterior
matrix to be represented by an Oldroyd-B fluid with a Deborah number of Dem=0.1. We
consider equal polymer and solvent viscosities in this exterior phase, psm=ppm=0.5. The drop
is Newtonian, with a drop-to-matrix viscosity ratio of p=1.0 and a capillary number of
Ca=0.10.

Figure 11 shows the transient extension of this drop at short and long times, along with
comparable results for a Newtonian matrix and for the reverse case of an Oldroyd-B drop
(Ded=1.0) in a Newtonian matrix. The latter two cases are the p=1.0, Ca=0.10 results of
Figures 7 and 9 respectively. Figure 11(a) shows that viscoelasticity in the drop allows a faster
initial rate of drop deformation than for a Newtonian drop of the same viscosity. Conversely,
the drop deforms more slowly in a viscoelastic matrix, compared with the purely Newtonian
case.

The steady state deformations shown in Figure 11(b) indicate that drop viscoelasticity
suppresses the final deformation, while matrix viscoelasticity produces a greater deformation
relative to the purely Newtonian case. As will be discussed at greater length in a subsequent
paper [52], viscoelastic drops have the ability to store energy and thereby resist deformation.
The enhanced deformation accompanying matrix viscoelasticity is attributed to the presence of
normal forces, which squeeze the drop.
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Figure 11. Drop strain, L/L0, versus dimensionless time for systems with viscoelasticity in the drop only
(---), the matrix only (— ) or neither (– – – ). Results are for FEM with p=1.0 and Ca=0.10. (a) and

(b) differ in the amount of time shown. A mesh of 16×24×32 elements was used.
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4.2.2. Viscoelastic drop within a �iscoelastic matrix. Finally, we briefly consider the case of a
completely viscoelastic system, with polymeric drop and matrix. Here, we apply the UCM
constitutive equation, obtained by setting the solvent viscosity to zero, psd=0 and psm=0, in
the Oldroyd-B equation. Under such conditions, we regularize the momentum equation by
setting 	=1.0 in Equation (22).

Having already compared the FEM predictions with linear theory in Section 4.1.1 for
Newtonian systems as the viscosity ratio p and capillary number Ca are varied, we now
consider only the case of equal drop and matrix viscosities, p=1.0, the limit of zero surface
tension, Ca��, and several combinations of drop and matrix elasticity (represented via the
Ded and Dem). Figure 12 shows drop strain versus time predicted by the FEM and linear
theory as curves and symbols respectively. The drops elongate monotonically in the absence of
interfacial tension, and the agreement between the finite element computations with linear
theory is excellent early on but worsens with increasing deformation. Of particular interest is
the case of Ded=Dem=1.0. For equal elasticity and viscosity in the drop and matrix, the drop
and matrix fluids are indistinguishable and, in the absence of interfacial tension, the drop
deformation is governed by the flow kinematics for a homogeneous fluid undergoing uniaxial
extension, i.e. L/L0=e�. This relation is represented by the filled circles of Figure 12 which lie
on the corresponding FEM curve, showing excellent agreement up to significant drop strains

Figure 12. Drop strain, L/L0, versus dimensionless time for UCM/UCM systems having Ca�� and
p=1.0. Curves are for FEM results: (— ) Ded=0, Dem=1.0; (---) Ded=1.0, Dem=1.0; and (– – – )
Ded=1.0, Dem=0. Open symbols show LT results: (�) Ded=0, Dem=1.0; (�) Ded=1.0, Dem=1.0;
and (�) Ded=1.0, Dem=0. Solid circles (�) are points on the curve L/L0=e�. A mesh of 16×24×16

was used.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 837–864



MODELING AXISYMMETRIC DROP DEFORMATION 861

(50 per cent). The open squares represent the predictions from linear theory; these points are
intersected by the line (which is not shown in the figure), L/L0=1+�, which is simply the
linear approximation to the actual exponential drop elongation.

As an interesting aside, the drop deformations for p
1.0 in Newtonian systems and for
Ded/Dem�1.0 in UCM systems exhibit drop strains which exceed that of the matrix, i.e.
L/L0�e�. Hence, the curve in Figure 12 for Dem=0 represents the upper limit of this
phenomenon arising from elastic effects of a UCM drop.

5. DISCUSSION AND CONCLUSIONS

We have presented computations of drop deformation in start-up uniaxial extensional flows
under different combinations of Newtonian and viscoelastic constitutitve behaviors. Our
results provide a consistent comparison of the DEVSS-G FEM and the BEM of Toose et al.
[26–28] and shed new insight into the behavior of this physical system.

Our calculations of Newtonian drops within a Newtonian matrix demonstrate that the FEM
and BEM methods are consistent with each other and, under conditions of small drop
deformation, consistent with the linear theory of Delaby et al. [16]. For such systems with no
inertial effects (such as those of interest here), the BEM has a clear advantage over the FEM
in terms of required computational effort. This arises since the Green’s functions employed by
the BEM allow for an exact mapping of the two-dimensional domain of the problem onto the
one-dimensional surface of the drop. The BEM computations presented here were readily
performed on a modest engineering workstation, while the FEM required substantially more
memory and one to two orders of magnitude greater processing time.

The BEM retains some of these advantages for modeling a viscoelastic drop within a
Newtonian matrix. Modifying the BEM to account for a polymeric drop requires the
introduction of collocation points within the drop to assess the stress field of the viscoelastic
fluid, negating some of the advantages of reducing the dimensionality of the problem as occurs
for a purely Newtonian system. With its interior collocation points, the BEM employed here
is similar in spirit to the FEM with its meshing of the drop interior. On the other hand, the
BEM does not appear to suffer from the difficulties posed to the FEM by the high
Weissenberg problem. While the DEVSS-G FEM used in this work has allowed for the
computation of flows with higher values of elasticity, an upper limit of De still exists [34]. The
BEM has the ability to obtain solutions in the limit, De��, and has even been used to study
deformations of fully elastic particles [27]. In general, the BEM is expected to provide solutions
up to the limits of a given fluid consitutive model, whereas the FEM will likely fail sooner as
a result of numerical problems related to the high Weissenberg problem. Explicit time
integration in the BEM saves on memory requirements and obviates solving linear equations
at each time step (as required during the Newton iteration in the trapezoid rule in the FEM),
thus speeding time step computations, but imposes time step size limits for numerical stability.

Following the discussion of the above paragraph, for the typical discretizations employed
here, the modified BEM was approximately one order of magnitude faster than the FEM in
terms of required processing time. However, the discrepancies between predictions of long-time
behavior presented in Section 4.1.2 are a cause for concern. For the discretizations employed
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here, the BEM predicted qualitatively different bahaviors than those exhibited by the corre-
sponding FEM computations; notably the BEM did not predict extensional overshoot of the
viscoelastic drop and predicted supercritical behavior at Ca=0.10 where the FEM predicted
subcritical behavior. The Ca=0.10 case is particularly challenging to compute, since large
stress gradients develop near the drop tips to balance the drop and matrix stress fields at
steady state (see, for example, the results presented in Reference [52]). We believe that the
BEM computations are not as accurate as the FEM computations, as evidenced by the
convergence behaviors shown in Figure 10. While the BEM calculations at the higher level of
discretization approach those of the FEM, the results differ qualitatively on the issue of
criticality. We believe that the Ca=0.10 case is indeed subcritical and that the discretization
error of the modified BEM is to blame for its prediction of supercritical drop extension. We
specifically suspect that the mesh placement strategy of the BEM is inadequate to accurately
resolve this difficult calculation. At each time step, the new positions of the interior nodes are
found by interpolating from the updated boundary position to the drop center [27]. This
remeshing could serve to smooth the stress fields slightly. Given that time integration is
performed explicitly and therefore requires relatively many small time steps, even very small
amounts of smoothing introduced by remeshing could produce significant effects at later times.
Alternatively, the uniform placement of interior nodes may simply be inadequate to resolve the
steep stress boundary layers near the steady state. We also believe that the overshoot behavior
exhibited by the other cases is directly related to such stress boundary layers [52] and that the
effects of smoothing or under-resolution would preclude their prediction by the BEM.
Interestingly, the fine-mesh BEM computation required over two orders of magnitude longer
processing time than the original-mesh BEM computations, thus making the computational
effort of the fine-mesh BEM greater than the original-mesh FEM computations (which are
accurate, as demonstrated in Figure 10). It is quite conceivable that, to achieve an adequate
level of mesh refinement where viscoelasticity and stress boundary layers play an important
role in drop deformation, the commanding computational advantages held by the BEM over
the FEM would be significantly diminished or even eliminated.

An indisputable advantage of the FEM over the BEM is its flexibility, such as the ability to
predict incompressible flows with inertia, and, as demonstrated here, the ability to predict
flows of any combination of viscoelastic or Newtonian fluids. The computations of Section 4.2
demonstrate the effects of a viscoelastic matrix on the drop extension problem. When the
matrix fluid is viscoelastic, relatively slower initial drop deformation rates are predicted, and
the presence of normal stresses in the matrix produces larger steady state drop deformations.
A more thorough investigation of the effects of drop and matrix viscoelasticity on drop
deformation in uniaxial flows will be presented in a forthcoming publication [52].
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