9 research outputs found

    Avoidance of wind farms by harbour seals is limited to pile driving activities

    Get PDF
    DJFR, GH, VMJ and BM were funded by the UK Department of Energy and Climate Change (DECC) as part of their Offshore Energy Strategic Environmental Assessment programme. DT and GH were also funded by NERC/Defra EBAO NE/J004243/1. ELJ was funded under Scottish Government grant MMSS001/01. This work was also supported by National Capability funding from the Natural Environment Research Council to SMRU (grant no. SMRU1001). Tags and their deployment in the Thames in 2006 and The Wash were funded by DECC. Tags and their deployment in the Thames in 2012 were commissioned by Zoological Society London, with funding from BBC Wildlife Fund and Sita Trust.1. As part of global efforts to reduce dependence on carbon-based energy sources there has been a rapid increase in the installation of renewable energy devices. The installation and operation of these devices can result in conflicts with wildlife. In the marine environment, mammals may avoid wind farms that are under construction or operating. Such avoidance may lead to more time spent travelling or displacement from key habitats. A paucity of data on at-sea movements of marine mammals around wind farms limits our understanding of the nature of their potential impacts. 2. Here, we present the results of a telemetry study on harbour seals Phoca vitulina in The Wash, south-east England, an area where wind farms are being constructed using impact pile driving. We investigated whether seals avoid wind farms during operation, construction in its entirety, or during piling activity. The study was carried out using historical telemetry data collected prior to any wind farm development and telemetry data collected in 2012 during the construction of one wind farm and the operation of another. 3. Within an operational wind farm, there was a close-to-significant increase in seal usage compared to prior to wind farm development. However, the wind farm was at the edge of a large area of increased usage, so the presence of the wind farm was unlikely to be the cause. 4. There was no significant displacement during construction as a whole. However, during piling, seal usage (abundance) was significantly reduced up to 25 km from the piling activity; within 25 km of the centre of the wind farm, there was a 19 to 83% (95% confidence intervals) decrease in usage compared to during breaks in piling, equating to a mean estimated displacement of 440 individuals. This amounts to significant displacement starting from predicted received levels of between 166 and 178 dB re 1 ΌPa(p·p). Displacement was limited to piling activity; within 2 h of cessation of pile driving, seals were distributed as per the non-piling scenario. 5. Synthesis and applications. Our spatial and temporal quantification of avoidance of wind farms by harbour seals is critical to reduce uncertainty and increase robustness in environmental impact assessments of future developments. Specifically, the results will allow policymakers to produce industry guidance on the likelihood of displacement of seals in response to pile driving; the relationship between sound levels and avoidance rates; and the duration of any avoidance, thus allowing far more accurate environmental assessments to be carried out during the consenting process. Further, our results can be used to inform mitigation strategies in terms of both the sound levels likely to cause displacement and what temporal patterns of piling would minimize the magnitude of the energetic impacts of displacement.Publisher PDFPeer reviewe

    From pup to predator; generalized hidden Markov models reveal rapid development of movement strategies in a naïve long‐lived vertebrate

    Get PDF
    Rapid development of a successful foraging strategy is critical for juvenile survival, especially for naïve animals that receive no parental guidance. However, this process is poorly understood for many species. Although observation of early‐life movements is increasingly possible with miniaturisation of animal‐borne telemetry devices, analytical limitations remain. Here, we tracked 29 recently‐weaned, grey seal Halichoerus grypus pups from colonies in two geographically distinct regions of the United Kingdom. We analysed at‐sea movements of pups throughout their initial months of nutritional independence to investigate the ontogeny of behaviour‐specific (foraging and travelling) movement patterns. Using generalized hidden Markov models (HMMs), we extended the conventional HMM framework to account for temporal changes in putative foraging and travelling movement characteristics, and investigate the effects of intrinsic (sex) and extrinsic (environment) factors on this process. Putative foraging behaviour became more tortuous with time, and travelling became faster and more directed, suggesting a reduction in search scale and an increase in travel efficiency as pups shifted from exploration to an adult‐like repeatable foraging strategy. Sex differences in movement characteristics were evident from colony departure, but sex‐specific activity budgets were only detected in one region. We show that sex‐specific behavioural strategies emerge before sexual size dimorphism in grey seals, and suggest that this phenomenon may occur in other long‐lived species. Our results also indicate that environmental variation may affect the emergence of sex‐specific foraging behaviour, highlighting the need to consider interacting intrinsic and extrinsic factors in shaping movement strategies of long‐lived vertebrates. Moreover, comparing the behavioural state estimations to those of a conventional HMM (no variation in state‐specific movement parameters) revealed differences in the amount and location of foraging activity, with implications for spatial conservation management. Overlooking intrinsic and extrinsic variation in movement processes could distort our understanding of foraging ecology, population dynamics, and conservation requirements

    Post-disturbance haulout behaviour of harbour seals

    Get PDF
    1. The impact of anthropogenic activity associated with the construction of a proposed tidal turbine on harbour seals (Phoca vitulina) was investigated using controlled disturbance trials.2. Trials were conducted by approaching hauled out seals by boat at a speed of five knots until all seals had entered the water. Trials were carried out at a frequency of once every three days when weather permitted and the post disturbance haulout behaviours of the seals were documented. The time taken for numbers to recover to pre-disturbance levels was determined by monitoring haulout sites using time-lapse photography. In addition, seals were tagged with GPS phone tags providing haulout location and at-sea movement data allowing investigation of how disturbance may influence haulout site choice and seal distribution.3. Mean post-disturbance recovery of seals was 52% (95%CI 35-69%) within 30 minutes. However, mean recovery only returned to 94% (95%CI 55-132%) of pre-disturbance levels after four hours.4. Telemetry tagged seals displayed a high degree of haulout site fidelity. Disturbance trials did not have a significant effect on the probability of seals moving to a different haulout site. 5. The results of this study suggest that increased boat activity that causes seals to enter the water at a higher than normal frequency will not cause individuals to relocate to another haulout site. Seals continued to return to the original site despite repeated disturbance trials suggesting that increased boat activity is likely to repeatedly impact on the same seals with the largest effect being to reduce the amount of time available to seals to haul out.6. This study recommends that monitoring effort to mitigate against increased levels of disturbance caused by boat activity need only be on a local scale relative to any proposed development

    Developing expert scientific consensus on the environmental and societal effects of marine artificial structures prior to decommissioning

    Get PDF
    This work was supported by the UK Natural Environment Research Council and the INSITE programme [INSITE SYNTHESIS project, grant number NE/W009889/1].Thousands of artificial (‘human-made’) structures are present in the marine environment, many at or approaching end-of-life and requiring urgent decisions regarding their decommissioning. No consensus has been reached on which decommissioning option(s) result in optimal environmental and societal outcomes, in part, owing to a paucity of evidence from real-world decommissioning case studies. To address this significant challenge, we asked a worldwide panel of scientists to provide their expert opinion. They were asked to identify and characterise the ecosystem effects of artificial structures in the sea, their causes and consequences, and to identify which, if any, should be retained following decommissioning. Experts considered that most of the pressures driving ecological and societal effects from marine artificial structures (MAS) were of medium severity, occur frequently, and are dependent on spatial scale with local-scale effects of greater magnitude than regional effects. The duration of many effects following decommissioning were considered to be relatively short, in the order of days. Overall, environmental effects of structures were considered marginally undesirable, while societal effects marginally desirable. Experts therefore indicated that any decision to leave MAS in place at end-of-life to be more beneficial to society than the natural environment. However, some individual environmental effects were considered desirable and worthy of retention, especially in certain geographic locations, where structures can support improved trophic linkages, increases in tourism, habitat provision, and population size, and provide stability in population dynamics. The expert analysis consensus that the effects of MAS are both negative and positive for the environment and society, gives no strong support for policy change whether removal or retention is favoured until further empirical evidence is available to justify change to the status quo. The combination of desirable and undesirable effects associated with MAS present a significant challenge for policy- and decision-makers in their justification to implement decommissioning options. Decisions may need to be decided on a case-by-case basis accounting for the trade-off in costs and benefits at a local level.Publisher PDFPeer reviewe

    Developing expert scientific consensus on the environmental and societal effects of marine artificial structures prior to decommissioning

    Get PDF
    Thousands of artificial (‘human-made’) structures are present in the marine environment, many at or approaching end-of-life and requiring urgent decisions regarding their decommissioning. No consensus has been reached on which decommissioning option(s) result in optimal environmental and societal outcomes, in part, owing to a paucity of evidence from real-world decommissioning case studies. To address this significant challenge, we asked a worldwide panel of scientists to provide their expert opinion. They were asked to identify and characterise the ecosystem effects of artificial structures in the sea, their causes and consequences, and to identify which, if any, should be retained following decommissioning. Experts considered that most of the pressures driving ecological and societal effects from marine artificial structures (MAS) were of medium severity, occur frequently, and are dependent on spatial scale with local-scale effects of greater magnitude than regional effects. The duration of many effects following decommissioning were considered to be relatively short, in the order of days. Overall, environmental effects of structures were considered marginally undesirable, while societal effects marginally desirable. Experts therefore indicated that any decision to leave MAS in place at end-of-life to be more beneficial to society than the natural environment. However, some individual environmental effects were considered desirable and worthy of retention, especially in certain geographic locations, where structures can support improved trophic linkages, increases in tourism, habitat provision, and population size, and provide stability in population dynamics. The expert analysis consensus that the effects of MAS are both negative and positive for the environment and society, gives no strong support for policy change whether removal or retention is favoured until further empirical evidence is available to justify change to the status quo. The combination of desirable and undesirable effects associated with MAS present a significant challenge for policy- and decision-makers in their justification to implement decommissioning options. Decisions may need to be decided on a case-by-case basis accounting for the trade-off in costs and benefits at a local level

    Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: A multi-ethnic meta-analysis of 45,891 individuals

    Get PDF
    Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10−8- 1.2 ×10−43). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10−4). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10−3, n = 22,044), increased triglycerides (p = 2.6×10−14, n = 93,440), increased waist-to-hip ratio (p = 1.8×10−5, n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10−3, n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL- cholesterol concentrations (p = 4.5×10−13, n = 96,748) and decreased BMI (p = 1.4×10−4, n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore