173 research outputs found

    An evaluation of the relative efficacy of an open airway, an oxygen reservoir and continuous positive airway pressure 5 cmH2O on the non-ventilated lung

    Get PDF
    Publisher's copy made available with the permission of the publisher © Australian Society of AnaesthetistsThe aim of this study, during one-lung ventilation, was to evaluate if oxygenation could be improved by use of a simple oxygen reservoir or application of 5 cmH2O continuous positive airway pressure (CPAP) to the non-ventilated lung compared with an open airway. Twenty-three patients with lung malignancy, undergoing thoracotomy requiring at least 60 minutes of one-lung ventilation before lung lobe excision, were studied. After routine induction and establishment of one-lung ventilation, the three treatments were applied in turn to the same patient in a sequence selected randomly. The first treatment was repeated as a fourth treatment and these results of the repeated treatment averaged to minimize the effect of slow changes. Arterial oxygenation was measured by an arterial blood gas 15 minutes after the application of each treatment. Twenty patients completed the study. Mean PaO2 (in mmHg) was 210.3 (SD 105.5) in the 'OPEN' treatment, 186.0 (SD 109.2) in the 'RESERVOIR' treatment, and 240.5 (SD 116.0) in the 'CPAP' treatment. This overall difference was not quite significant (P=0.058, paired ANOVA), but comparison of the pairs showed that there was a significant better oxygenation only with the CPAP compared to the reservoir treatments (t=2.52, P=0.021). While the effect on the surgical field was not apparent in most patients, in one patient surgery was impeded during CPAP. Our results show that the use of a reservoir does not give oxygenation better than an open tube, and is less effective than the use of CPAP 5 cmH2O on the non-ventilated lung during one-lung ventilation.J. Slimani, W. J. Russell, C. Jurisevichttp://www.aaic.net.au/Article.asp?D=200404

    Descriptions, truth value intuitions, and questions

    Get PDF
    International audienceSince the famous debate between Russell (Mind 14: 479–493, 1905, Mind 66: 385–389, 1957) and Strawson (Mind 59: 320–344, 1950; Introduction to logical theory, 1952; Theoria, 30: 96–118, 1964) linguistic intuitions about truth values have been considered notoriously unreliable as a guide to the semantics of definite descriptions. As a result, most existing semantic analyses of definites leave a large number of intuitions unexplained. In this paper, I explore the nature of the relationship between truth value intuitions and non-referring definites. Inspired by comments in Strawson (Introduction to logical theory, 1964), I argue that given certain systematic considerations, one can provide a structured explanation of conflicting intuitions. I show that the intuitions of falsity, which proponents of a Russellian analysis often appeal to, result from evaluating sentences in relation to specific questions in context. This is shown by developing a method for predicting when sentences containing non-referring definites elicit intuitions of falsity. My proposed analysis draws importantly on Roberts (in: Yoon & Kathol (eds.) OSU working papers in Linguistics: vol. 49: Papers in Semantics 1998; in: Horn & Ward (eds.) Handbook of pragmatics, 2004) and recent research in the semantics and pragmatics of focus

    Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands?

    Get PDF
    Grasses using the C4 photosynthetic pathway dominate today's savanna ecosystems and account for ∼20% of terrestrial carbon fixation. However, this dominant status was reached only recently, during a period of C4 grassland expansion in the Late Miocene and Early Pliocene (4–8 Myr ago). Declining atmospheric CO2 has long been considered the key driver of this event, but new geological evidence casts doubt on the idea, forcing a reconsideration of the environmental cues for C4 plant success.Here, I evaluate the current hypotheses and debate in this field, beginning with a discussion of the role of CO2 in the evolutionary origins, rather than expansion, of C4 grasses. Atmospheric CO2 starvation is a plausible selection agent for the C4 pathway, but a time gap of around 10 Myr remains between major decreases in CO2 during the Oligocene, and the earliest current evidence of C4 plants.An emerging ecological perspective explains the Miocene expansion of C4 grasslands via changes in climatic seasonality and the occurrence of fire. However, the climatic drivers of this event are debated and may vary among geographical regions.Uncertainty in these areas could be reduced significantly by new directions in ecological research, especially the discovery that grass species richness along rainfall gradients shows contrasting patterns in different C4 clades. By re-evaluating a published data set, I show that increasing seasonality of rainfall is linked to changes in the relative abundance of the major C4 grass clades Paniceae and Andropogoneae. I propose that the explicit inclusion of these ecological patterns would significantly strengthen climate change hypotheses of Miocene C4 grassland expansion. Critically, they allow a new series of testable predictions to be made about the fossil record.Synthesis. This paper offers a novel framework for integrating modern ecological patterns into theories about the geological history of C4 plants

    Modelling spectral and timing properties of accreting black holes: the hybrid hot flow paradigm

    Full text link
    The general picture that emerged by the end of 1990s from a large set of optical and X-ray, spectral and timing data was that the X-rays are produced in the innermost hot part of the accretion flow, while the optical/infrared (OIR) emission is mainly produced by the irradiated outer thin accretion disc. Recent multiwavelength observations of Galactic black hole transients show that the situation is not so simple. Fast variability in the OIR band, OIR excesses above the thermal emission and a complicated interplay between the X-ray and the OIR light curves imply that the OIR emitting region is much more compact. One of the popular hypotheses is that the jet contributes to the OIR emission and even is responsible for the bulk of the X-rays. However, this scenario is largely ad hoc and is in contradiction with many previously established facts. Alternatively, the hot accretion flow, known to be consistent with the X-ray spectral and timing data, is also a viable candidate to produce the OIR radiation. The hot-flow scenario naturally explains the power-law like OIR spectra, fast OIR variability and its complex relation to the X-rays if the hot flow contains non-thermal electrons (even in energetically negligible quantities), which are required by the presence of the MeV tail in Cyg X-1. The presence of non-thermal electrons also lowers the equilibrium electron temperature in the hot flow model to <100 keV, making it more consistent with observations. Here we argue that any viable model should simultaneously explain a large set of spectral and timing data and show that the hybrid (thermal/non-thermal) hot flow model satisfies most of the constraints.Comment: 26 pages, 13 figures. To be published in the Space Science Reviews and as hard cover in the Space Sciences Series of ISSI - The Physics of Accretion on to Black Holes (Springer Publisher

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Mathematical Aspects of the Periodic Law

    Full text link
    We review different studies of the Periodic Law and the set of chemical elements from a mathematical point of view. This discussion covers the first attempts made in the 19th century up to the present day. Mathematics employed to study the periodic system includes number theory, information theory, order theory, set theory and topology. Each theory used shows that it is possible to provide the Periodic Law with a mathematical structure. We also show that it is possible to study the chemical elements taking advantage of their phenomenological properties, and that it is not always necessary to reduce the concept of chemical elements to the quantum atomic concept to be able to find interpretations for the Periodic Law. Finally, a connection is noted between the lengths of the periods of the Periodic Law and the philosophical Pythagorean doctrine.Comment: 20 pages, PDF fil
    corecore