1,969 research outputs found
The Effects of Inter-particle Attractions on Colloidal Sedimentation
We use a mesoscopic simulation technique to study the effect of short-ranged
inter-particle attraction on the steady-state sedimentation of colloidal
suspensions. Attractions increase the average sedimentation velocity
compared to the pure hard-sphere case, and for strong enough attractions, a
non-monotonic dependence on the packing fraction with a maximum velocity
at intermediate is observed. Attractions also strongly enhance
hydrodynamic velocity fluctuations, which show a pronounced maximum size as a
function of . These results are linked to a complex interplay between
hydrodynamics and the formation and break-up of transient many-particle
clusters.Comment: 4 pages 4 figure
Formation of shear bands in drying colloidal dispersions
In directionally dried colloidal dispersions regular bands can appear behind the drying front, inclined at ±45° to the drying line. Although these features have been noted to share visual similarities with shear bands in metal, no physical mechanism for their formation has ever been suggested, until very recently. Here, through microscopy of silica and polystyrene dispersions, dried in Hele-Shaw cells, we demonstrate that the bands are indeed associated with local shear strains. We further show how the bands form, that they scale with the thickness of the drying layer, and that they are eliminated by the addition of salt to the drying dispersions. Finally, we reveal the origins of these bands in the compressive forces associated with drying
Nonlinear effects in charge stabilized colloidal suspensions
Molecular Dynamics simulations are used to study the effective interactions
in charged stabilized colloidal suspensions. For not too high macroion charges
and sufficiently large screening, the concept of the potential of mean force is
known to work well. In the present work, we focus on highly charged macroions
in the limit of low salt concentrations. Within this regime, nonlinear
corrections to the celebrated DLVO theory [B. Derjaguin and L. Landau, Acta
Physicochem. USSR {\bf 14}, 633 (1941); E.J.W. Verwey and J.T.G. Overbeck, {\em
Theory of the Stability of Lyotropic Colloids} (Elsevier, Amsterdam, 1948)]
have to be considered. For non--bulklike systems, such as isolated pairs or
triples of macroions, we show, that nonlinear effects can become relevant,
which cannot be described by the charge renormalization concept [S. Alexander
et al., J. Chem. Phys. {\bf 80}, 5776 (1984)]. For an isolated pair of
macroions, we find an almost perfect qualitative agreement between our
simulation data and the primitive model. However, on a quantitative level,
neither Debye-H\"uckel theory nor the charge renormalization concept can be
confirmed in detail. This seems mainly to be related to the fact, that for
small ion concentrations, microionic layers can strongly overlap, whereas,
simultaneously, excluded volume effects are less important. In the case of
isolated triples, where we compare between coaxial and triangular geometries,
we find attractive corrections to pairwise additivity in the limit of small
macroion separations and salt concentrations. These triplet interactions arise
if all three microionic layers around the macroions exhibit a significant
overlap. In contrast to the case of two isolated colloids, the charge
distribution around a macroion in a triple is found to be anisotropic.Comment: 10 pages, 9 figure
Surface-mediated attraction between colloids
We investigate the equilibrium properties of a colloidal solution in contact
with a soft interface. As a result of symmetry breaking, surface effects are
generally prevailing in confined colloidal systems. In this Letter, particular
emphasis is given to surface fluctuations and their consequences on the local
(re)organization of the suspension. It is shown that particles experience a
significant effective interaction in the vicinity of the interface. This
potential of mean force is always attractive, with range controlled by the
surface correlation length. We suggest that, under some circumstances,
surface-induced attraction may have a strong influence on the local particle
distribution
Dynamic regimes of hydrodynamically coupled self-propelling particles
We analyze the collective dynamics of self-propelling particles (spps) which
move at small Reynolds numbers including the hydrodynamic coupling to the
suspending solvent through numerical simulations. The velocity distribution
functions show marked deviations from Gaussian behavior at short times, and the
mean-square displacement at long times shows a transition from diffusive to
ballistic motion for appropriate driving mechanism at low concentrations. We
discuss the structures the spps form at long times and how they correlate to
their dynamic behavior.Comment: 7 pages, 4 figure
Direct Numerical Simulations of Electrophoresis of Charged Colloids
We propose a numerical method to simulate electrohydrodynamic phenomena in
charged colloidal dispersions. This method enables us to compute the time
evolutions of colloidal particles, ions, and host fluids simultaneously by
solving Newton, advection-diffusion, and Navier--Stokes equations so that the
electrohydrodynamic couplings can be fully taken into account. The
electrophoretic mobilities of charged spherical particles are calculated in
several situations. The comparisons with approximation theories show
quantitative agreements for dilute dispersions without any empirical
parameters, however, our simulation predicts notable deviations in the case of
dense dispersions.Comment: 4pages, 3figures, to appear in Phys. Rev. Let
Quantifying the Reversible Association of Thermosensitive Nanoparticles
Under many conditions, biomolecules and nanoparticles associate by means of
attractive bonds, due to hydrophobic attraction. Extracting the microscopic
association or dissociation rates from experimental data is complicated by the
dissociation events and by the sensitivity of the binding force to temperature
(T). Here we introduce a theoretical model that combined with light-scattering
experiments allows us to quantify these rates and the reversible binding energy
as a function of T. We apply this method to the reversible aggregation of
thermoresponsive polystyrene/poly(N-isopropylacrylamide) core-shell
nanoparticles, as a model system for biomolecules. We find that the binding
energy changes sharply with T, and relate this remarkable switchable behavior
to the hydrophobic-hydrophilic transition of the thermosensitive nanoparticles
The Need for Technology Maturity of Any Advanced Capability to Achieve Better Life Cycle Cost (LCC)
Programs such as space transportation systems are developed and deployed only rarely, and they have long development schedules and large development and life cycle costs (LCC). They have not historically had their LCC predicted well and have only had an effort to control the DDT&E phase of the programs. One of the factors driving the predictability, and thus control, of the LCC of a program is the maturity of the technologies incorporated in the program. If the technologies incorporated are less mature (as measured by their Technology Readiness Level - TRL), then the LCC not only increases but the degree of increase is difficult to predict. Consequently, new programs avoid incorporating technologies unless they are quite mature, generally TRL greater than or equal to 7 (system prototype demonstrated in a space environment) to allow better predictability of the DDT&E phase costs unless there is no alternative. On the other hand, technology development programs rarely develop technologies beyond TRL 6 (system/subsystem model or prototype demonstrated in a relevant environment). Currently the lack of development funds beyond TRL 6 and the major funding required for full scale development leave little or no funding available to prototype TRL 6 concepts so that hardware would be in the ready mode for safe, reliable and cost effective incorporation. The net effect is that each new program either incorporates little new technology or has longer development schedules and costs, and higher LCC, than planned. This paper presents methods to ensure that advanced technologies are incorporated into future programs while providing a greater accuracy of predicting their LCC. One method is having a dedicated organization to develop X-series vehicles or separate prototypes carried on other vehicles. The question of whether such an organization should be independent of NASA and/or have an independent funding source is discussed. Other methods are also discussed. How to make the choice of which technologies to pursue to the prototype level is also discussed since, to achieve better LCC, first the selection of the appropriate technologies
Recommended from our members
Removal of NOx and NOy in biomass burning plumes in the boundary layer over northern Australia
Mobility and Diffusion of a Tagged Particle in a Driven Colloidal Suspension
We study numerically the influence of density and strain rate on the
diffusion and mobility of a single tagged particle in a sheared colloidal
suspension. We determine independently the time-dependent velocity
autocorrelation functions and, through a novel method, the response functions
with respect to a small force. While both the diffusion coefficient and the
mobility depend on the strain rate the latter exhibits a rather weak
dependency. Somewhat surprisingly, we find that the initial decay of response
and correlation functions coincide, allowing for an interpretation in terms of
an 'effective temperature'. Such a phenomenological effective temperature
recovers the Einstein relation in nonequilibrium. We show that our data is well
described by two expansions to lowest order in the strain rate.Comment: submitted to EP
- …