1,874 research outputs found

    INDIVIDUAL SERUM PROTEINS IN LIVER DISEASES

    Get PDF
    No abstrac

    Rashba split surface states in BiTeBr

    Get PDF
    Within density functional theory, we study bulk band structure and surface states of BiTeBr. We consider both ordered and disordered phases which differ in atomic order in the Te-Br sublattice. On the basis of relativistic ab-initio calculations, we show that the ordered BiTeBr is energetically preferable as compared with the disordered one. We demonstrate that both Te- and Br-terminated surfaces of the ordered BiTeBr hold surface states with a giant spin-orbit splitting. The Te-terminated surface-state spin splitting has the Rashba-type behavior with the coupling parameter \alpha_R ~ 2 eV\AA.Comment: 8 pages, 7 figure

    The photon absorption edge in superconductors and gapped 1D systems

    Full text link
    Opening of a gap in the low-energy excitations spectrum affects the power-law singularity in the photon absorption spectrum A(Ω)A(\Omega). In the normal state, the singularity, A(Ω)[D/(ΩΩth)]αA(\Omega)\propto [D/(\Omega-\Omega_{\rm th})]^\alpha, is characterized by an interaction-dependent exponent α\alpha. On the contrary, in the supeconducting state the divergence, A(Ω)(D/Δ)α(ΩΩ~th)1/2A(\Omega)\propto (D/\Delta)^\alpha(\Omega-\tilde{\Omega}_{\rm th})^{-1/2}, is interaction-independent, while threshold is shifted, Ω~th=Ωth+Δ\tilde{\Omega}_{\rm th}=\Omega_{\rm th}+\Delta; the ``normal-metal'' form of A(Ω)A(\Omega) resumes at (ΩΩ~th)Δexp(1/α)(\Omega-\tilde{\Omega}_{\rm th})\gtrsim \Delta\exp(1/\alpha). If the core hole is magnetic, it creates in-gap states; these states transform drastically the absorption edge. In addition, processes of scattering off the magnetic core hole involving spin-flip give rise to inelastic absorption with one or several {\it real} excited pairs in the final state, yielding a structure of peaks in A(Ω)A(\Omega) at multiples of 2Δ2\Delta above the threshold frequency. The above conclusions apply to a broad class of systems, e.g., Mott insulators, where a gap opens at the Fermi level due to the interactions.Comment: 6 pages, 5 figures; published versio

    Subgap states in dirty superconductors and their effect on dephasing in Josephson qubits

    Full text link
    We present a theory of the subgap tails of the density of states in a diffusive superconductor containing magnetic impurities. We show that the subgap tails have two contributions: one arising from mesoscopic gap fluctuations, previously discussed by Lamacraft and Simons, and the other associated to the long-wave fluctuations of the concentration of magnetic impurities. We study the latter both in small superconducting grains and in bulk systems [d=1,2,3d=1,2,3], and establish the dimensionless parameter that controls which of the two contributions dominates the subgap tails. We observe that these contributions are related to each other by dimensional reduction. We apply the theory to estimate the effects of a weak concentration of magnetic impurities [1p.p.m\approx 1 {\rm p.p.m}] on the phase coherence of Josephson qubits. We find that at these typical concentrations, magnetic impurities are relevant for the dephasing in large qubits, designed around a 10μm10 {\rm \mu m} scale, where they limit the quality factor to be Q<104105Q<10^4-10^5.Comment: 13 pages, 1 figur

    The redox transformations and nucleophilic replacements as possible metabolic reactions of the drug “Triazaverin”. The chemical modeling of the metabolic processes

    Full text link
    As a model of metabolic transformations of antiviral drug “Triazaverin” and its analogues‑2-alkylthio‑6-nitro‑1,2,4-triazolo[5,1-c][1,2,4]triazine‑7-ones 1a-d examined the oxidation of alkylthio groups to the corresponding sulfoxides 2a-d and sulfones 3a-d, as well as the process of nucleophilic substitution sulfonyloxy group of cysteine and cysteamine with the formation of compounds 5 and 6

    Many-body effects on the Rashba-type spin splitting in bulk bismuth tellurohalides

    Get PDF
    We report on many-body corrections to one-electron energy spectra of bulk bismuth tellurohalides---materials that exhibit a giant Rashba-type spin splitting of the band-gap edge states. We show that the corrections obtained in the one-shot GWGW approximation noticeably modify the spin-orbit-induced spin splitting evaluated within density functional theory. We demonstrate that taking into account many-body effects is crucial to interpret the available experimental data.Comment: 6 pages, 1 figur

    Pressure effects on crystal and electronic structure of bismuth tellurohalides

    Get PDF
    We study the possibility of pressure-induced transitions from a normal semiconductor to a topological insulator (TI) in bismuth tellurohalides using density functional theory and tight-binding method. In BiTeI this transition is realized through the formation of an intermediate phase, a Weyl semimetal, that leads to modification of surface state dispersions. In the topologically trivial phase, the surface states exhibit a Bychkov-Rashba type dispersion. The Weyl semimetal phase exists in a narrow pressure interval of 0.2 GPa. After the Weyl semimetal--TI transition occurs, the surface electronic structure is characterized by gapless states with linear dispersion. The peculiarities of the surface states modification under pressure depend on the band-bending effect. We have also calculated the frequencies of Raman active modes for BiTeI in the proposed high-pressure crystal phases in order to compare them with available experimental data. Unlike BiTeI, in BiTeBr and BiTeCl the topological phase transition does not occur. In BiTeBr, the crystal structure changes with pressure but the phase remains a trivial one. However, the transition appears to be possible if the low-pressure crystal structure is retained. In BiTeCl under pressure, the topological phase does not appear up to 18 GPa due to a relatively large band gap width in this compound

    Nonequilibrium transport via spin-induced sub-gap states in superconductor/quantum dot/normal metal cotunnel junctions

    Get PDF
    We study low-temperature transport through a Coulomb blockaded quantum dot (QD) contacted by a normal (N), and a superconducting (S) electrode. Within an effective cotunneling model the conduction electron self energy is calculated to leading order in the cotunneling amplitudes and subsequently resummed to obtain the nonequilibrium T-matrix, from which we obtain the nonlinear cotunneling conductance. For even occupied dots the system can be conceived as an effective S/N-cotunnel junction with subgap transport mediated by Andreev reflections. The net spin of an odd occupied dot, however, leads to the formation of sub-gap resonances inside the superconducting gap which gives rise to a characteristic peak-dip structure in the differential conductance, as observed in recent experiments.Comment: 13 pages, 13 figures (new version contains reformulations and corrections of typos etc

    Tests of Scintillator Tiles for the Technological Prototype of Highly Granular Hadron Calorimeter

    Get PDF
    A new technological prototype of the highly granular hadron calorimeter for future collider experiments is being developed by the CALICE collaboration. The proposed baseline design of active elements considers scintillator tiles with a silicon photomultiplier readout. The light yield and uniformity of response of two tiles with dimple geometry from different producers were measured. The technology proposed for the ILD detector was used: each tile was individually wrapped in the reflecting foil and the SiPm was coupled directly to the dimple side of the scintillator tile. The measured response to minimum ionizing particle is almost twice better for BICRON408 scintillator than for polystyrene-based scintillator, while the estimated uniformity of response is better for the polystyrene-based scintillator tile produced by injection molding

    CHANGES OF THE SERUM ENZYME LEVEL IN PATIENTS WITH LIVER CARCINOMA

    Get PDF
    No abstrac
    corecore