115 research outputs found

    Band bending and quasi-2DEG in the metallized β\beta-SiC(001) surface

    Full text link
    We study the mechanism leading to the metallization of the β\beta-SiC(001) Si-rich surface induced by hydrogen adsorption. We analyze the effects of band bending and demonstrate the existence of a quasi-2D electron gas, which originates from the donation of electrons from adsorbed hydrogen to bulk conduction states. We also provide a simple model that captures the main features of the results of first-principles calculations, and uncovers the basic physics of the process.Comment: accepted for publication in physica status solidi - Rapid Research Letter

    Sensitive and quantitative method to evaluate DNA methylation of the positive regulatory domains (PRDI, PRDII) and cAMP response element (CRE) in human endothelial nitric oxide synthase promote

    Get PDF
    Nitric oxide plays a prominent role in the cardiovascular system and much attention has been devoted in the last years on deciphering the regulation of human endothelial nitric oxide synthase (eNOS) expression. Epigenetic-based mechanisms have a key role in the eNOS expression and their pathologic perturbations may have profound effects on the steady state RNA levels in the endothelium. The human eNOS promoter lacks a canonical TATA box and it does not contain a proximal CpG island. A differentially DNA methylated region (DMR) in the native eNOS proximal promoter is involved in gene expression regulation. Here we describe a quantitative, sensitive and cost-effective method that, relying on a novel normalization strategy, allows the quantification of DNA methylation status of the positive regulatory domains (PRDI, PRDII) and cAMP response element (CRE) in human eNOS promoter. This technique will enable to explore the functional relevance of DNA methylation perturbations of eNOS promoter both under pathological and physiological conditions

    Precise Therapy for Thoracic Aortic Aneurysm in Marfan Syndrome: A Puzzle Nearing Its Solution.

    Get PDF
    Abstract Marfan Syndrome (MFS) is a rare connective tissue disorder, resulting from mutations in the fibrillin-1 gene, characterized by pathologic phenotypes in multiple organs, the most detrimental of which affects the thoracic aorta. Indeed, thoracic aortic aneurysms (TAA), leading to acute dissection and rupture, are today the major cause of morbidity and mortality in adult MFS patients. Therefore, there is a compelling need for novel therapeutic strategies to delay TAA progression and counteract aortic dissection occurrence. Unfortunately, the wide phenotypic variability of MFS patients, together with the lack of a complete genotype-phenotype correlation, have represented until now a barrier hampering the conduction of translational studies aimed to predict disease prognosis and drug discovery. In this review, we will illustrate available therapeutic strategies to improve the health of MFS patients. Starting from gold standard surgical overtures and the description of the main pharmacological approaches, we will comprehensively review the state-of-the-art of in vivo MFS models and discuss recent clinical pharmacogenetic results. Finally, we will focus on induced pluripotent stem cells (iPSC) as a technology that, if integrated with preclinical research and pharmacogenetics, could contribute in determining the best therapeutic approach for each MFS patient on the base of individual differences. Finally, we will suggest the integration of preclinical studies, pharmacogenetics and iPSC technology as the most likely strategy to help solve the composite puzzle of precise medicine in this condition

    Finite size effects on transport coefficients for models of atomic wires coupled to phonons

    Full text link
    We consider models of quasi-1-d, planar atomic wires consisting of several, laterally coupled rows of atoms, with mutually non-interacting electrons. This electronic wire system is coupled to phonons, corresponding, e.g., to some substrate. We aim at computing diffusion coefficients in dependence on the wire widths and the lateral coupling. To this end we firstly construct a numerically manageable linear collision term for the dynamics of the electronic occupation numbers by following a certain projection operator approach. By means of this collision term we set up a linear Boltzmann equation. A formula for extracting diffusion coefficients from such Boltzmann equations is given. We find in the regime of a few atomic rows and intermediate lateral coupling a significant and non-trivial dependence of the diffusion coefficient on both, the width and the lateral coupling. These results, in principle, suggest the possible applicability of such atomic wires as electronic devices, such as, e.g., switches.Comment: 9 pages, 5 figures, accepted for publication in Eur. Phys. J.

    Cyclophilin A/EMMPRIN Axis Is Involved in Pro-Fibrotic Processes Associated with Thoracic Aortic Aneurysm of Marfan Syndrome Patients

    Get PDF
    Background: Marfan syndrome (MFS) is a genetic disease, characterized by thoracic aortic aneurysm (TAA), which treatment is to date purely surgical. Understanding of novel molecular targets is mandatory to unveil effective pharmacological approaches. Cyclophilin A (CyPA) and its receptor EMMPRIN are associated with several cardiovascular diseases, including abdominal aortic aneurysm. Here, we envisioned the contribution of CyPA/EMMPRIN axis in MFS-related TAA. METHODS: We obtained thoracic aortic samples from healthy controls (HC) and MFS patients' aortas and then isolated vascular smooth muscle cells (VSMC) from the aortic wall. RESULTS: our findings revealed that MFS aortic tissue samples isolated from the dilated zone of aorta showed higher expression levels of EMMPRIN vs. MFS non-dilated aorta and HC. Interestingly, angiotensin II significantly stimulated CyPA secretion in MFS-derived VSMC (MFS-VSMC). CyPA treatment on MFS-VSMC led to increased levels of EMMPRIN and other MFS-associated pro-fibrotic mediators, such as TGF-\u3b21 and collagen I. These molecules were downregulated by in vitro treatment with CyPA inhibitor MM284. Our results suggest that CyPA/EMMPRIN axis is involved in MFS-related TAA development, since EMMPRIN is upregulated in the dilated zone of MFS patients' TAA and the inhibition of its ligand, CyPA, downregulated EMMPRIN and MFS-related markers in MFS-VSMC. CONCLUSIONS: these insights suggest both a novel detrimental role for CyPA/EMMPRIN axis and its inhibition as a potential therapeutic strategy for MFS-related TAA treatment

    Atomistic simulations of self-trapped exciton formation in silicon nanostructures: The transition from quantum dots to nanowires

    Full text link
    Using an approximate time-dependent density functional theory method, we calculate the absorption and luminescence spectra for hydrogen passivated silicon nanoscale structures with large aspect ratio. The effect of electron confinement in axial and radial directions is systematically investigated. Excited state relaxation leads to significant Stokes shifts for short nanorods with lengths less than 2 nm, but has little effect on the luminescence intensity. The formation of self-trapped excitons is likewise observed for short nanostructures only; longer wires exhibit fully delocalized excitons with neglible geometrical distortion at the excited state minimum.Comment: 10 pages, 4 figure

    Unveiling Planar Defects in Hexagonal Group IV Materials

    Get PDF
    Recently synthesized hexagonal group IV materials are a promising platform to realize efficient light emission that is closely integrated with electronics. A high crystal quality is essential to assess the intrinsic electronic and optical properties of these materials unaffected by structural defects. Here, we identify a previously unknown partial planar defect in materials with a type I 3 basal stacking fault and investigate its structural and electronic properties. Electron microscopy and atomistic modeling are used to reconstruct and visualize this stacking fault and its terminating dislocations in the crystal. From band structure calculations coupled to photoluminescence measurements, we conclude that the I 3 defect does not create states within the hex-Ge and hex-Si band gap. Therefore, the defect is not detrimental to the optoelectronic properties of the hex-SiGe materials family. Finally, highlighting the properties of this defect can be of great interest to the community of hex-III-Ns, where this defect is also present

    Linking cell function with perfusion : insights from the transcatheter delivery of bone marrow-derived CD133+ cells in ischemic refractory cardiomyopathy trial (RECARDIO)

    Get PDF
    Background: Cell therapy with bone marrow (BM)-derived progenitors has emerged as a promising therapeutic for refractory angina (RA) patients. In the present study, we evaluated the safety and preliminary efficacy of transcatheter delivery of autologous BM-derived advanced therapy medicinal product CD133(+) cells (ATMP-CD133) in RA patients, correlating perfusion outcome with cell function. Methods: In the phase I "Endocavitary Injection of Bone Marrow Derived CD133(+) Cells in Ischemic Refractory Cardiomyopathy" (RECARDIO) trial, a total of 10 patients with left ventricular (LV) dysfunction (ejection fraction <= 45%) and evidence of reversible ischemia, as assessed by single-photon emission computed tomography (SPECT), underwent BM aspiration and fluoroscopy-based percutaneous endomyocardial delivery of ATMP-CD133. Patients were evaluated at 6 and 12 months for safety and preliminary efficacy endpoints. ATMP-CD133 samples were used for in vitro correlations. Results: Patients were treated safely with a mean number of 6.57 +/- 3.45 x 10(6) ATMP-CD133. At 6-month follow-up, myocardial perfusion at SPECT was significantly ameliorated in terms of changes in summed stress (from 18.2 +/- 8.6 to 13.8 +/- 7.8, p = 0.05) and difference scores (from 12.0 +/- 5.3 to 6.1 +/- 4.0, p = 0.02) and number of segments with inducible ischemia (from 7.3 +/- 2.2 to 4.0 +/- 2.7, p = 0.003). Similarly, Canadian Cardiovascular Society and New York Heart Association classes significantly improved at follow-up vs baseline (p = 0.001 and p = 0.007, respectively). Changes in summed stress score changes positively correlated with ATMP-CD133 release of proangiogenic cytokines HGF and PDGF-bb (r = 0.80, p = 0.009 and r = 0.77, p = 0.01, respectively) and negatively with the proinflammatory cytokines RANTES (r = -0.79, p = 0.01) and IL-6 (r = -0.76, p = 0.02). Conclusion: Results of the RECARDIO trial suggested safety and efficacy in terms of clinical and perfusion outcomes in patients with RA and LV dysfunction. The observed link between myocardial perfusion improvements and ATMP-CD133 secretome may represent a proof of concept for further mechanistic investigations

    Impact of pore anisotropy on the thermal conductivity of porous Si nanowires

    Get PDF
    Porous materials display enhanced scattering mechanisms that greatly infuence their transport properties. Metal-assisted chemical etching (MACE) enables fabrication of porous silicon nanowires starting from a doped Si wafer by using a metal template that catalyzes the etching process. Here, we report on the low thermal conductivity (κ) of individual porous Si nanowires (NWs) prepared from MACE, with values as low as 0.87W·m−1·K−1 for 90nm diameter wires with 35-40% porosity. Despite the strong suppression of long mean free path phonons in porous materials, we fnd a linear correlation of κ with the NW diameter. We ascribe this dependence to the anisotropic porous structure that arises during chemical etching and modifes the phonon percolation pathway in the center and outer regions of the nanowire. The inner microstructure of the NWs is visualized by means of electron tomography. In addition, we have used molecular dynamics simulations to provide guidance for how a porosity gradient infuences phonon transport along the axis of the NW. Our fndings are important towards the rational design of porous materials with tailored thermal and electronic properties for improved thermoelectric devices

    Reversible Modulation of Spontaneous Emission by Strain in Silicon Nanowires

    Get PDF
    We computationally study the effect of uniaxial strain in modulating the spontaneous emission of photons in silicon nanowires. Our main finding is that a one to two orders of magnitude change in spontaneous emission time occurs due to two distinct mechanisms: (A) Change in wave function symmetry, where within the direct bandgap regime, strain changes the symmetry of wave functions, which in turn leads to a large change of optical dipole matrix element. (B) Direct to indirect bandgap transition which makes the spontaneous photon emission to be of a slow second order process mediated by phonons. This feature uniquely occurs in silicon nanowires while in bulk silicon there is no change of optical properties under any reasonable amount of strain. These results promise new applications of silicon nanowires as optoelectronic devices including a mechanism for lasing. Our results are verifiable using existing experimental techniques of applying strain to nanowires
    • …
    corecore