1,192 research outputs found
Extraction of coherent structures in a rotating turbulent flow experiment
The discrete wavelet packet transform (DWPT) and discrete wavelet transform
(DWT) are used to extract and study the dynamics of coherent structures in a
turbulent rotating fluid. Three-dimensional (3D) turbulence is generated by
strong pumping through tubes at the bottom of a rotating tank (48.4 cm high,
39.4 cm diameter). This flow evolves toward two-dimensional (2D) turbulence
with increasing height in the tank. Particle Image Velocimetry (PIV)
measurements on the quasi-2D flow reveal many long-lived coherent vortices with
a wide range of sizes. The vorticity fields exhibit vortex birth, merger,
scattering, and destruction. We separate the flow into a low-entropy
``coherent'' and a high-entropy ``incoherent'' component by thresholding the
coefficients of the DWPT and DWT of the vorticity fields. Similar thresholdings
using the Fourier transform and JPEG compression together with the Okubo-Weiss
criterion are also tested for comparison. We find that the DWPT and DWT yield
similar results and are much more efficient at representing the total flow than
a Fourier-based method. Only about 3% of the large-amplitude coefficients of
the DWPT and DWT are necessary to represent the coherent component and preserve
the vorticity probability density function, transport properties, and spatial
and temporal correlations. The remaining small amplitude coefficients represent
the incoherent component, which has near Gaussian vorticity PDF, contains no
coherent structures, rapidly loses correlation in time, and does not contribute
significantly to the transport properties of the flow. This suggests that one
can describe and simulate such turbulent flow using a relatively small number
of wavelet or wavelet packet modes.Comment: experimental work aprox 17 pages, 11 figures, accepted to appear in
PRE, last few figures appear at the end. clarifications, added references,
fixed typo
Repetitive Sampling and Control Threshold Improve 16S rRNA Gene Sequencing Results From Produced Waters Associated With Hydraulically Fractured Shale
Sequencing microbial DNA from deep subsurface environments is complicated by a number of issues ranging from contamination to non-reproducible results. Many samples obtained from these environments â which are of great interest due to the potential to stimulate microbial methane generation â contain low biomass. Therefore, samples from these environments are difficult to study as sequencing results can be easily impacted by contamination. In this case, the low amount of sample biomass may be effectively swamped by the contaminating DNA and generate misleading results. Additionally, performing field work in these environments can be difficult, as researchers generally have limited access to and time on site. Therefore, optimizing a sampling plan to produce the best results while collecting the greatest number of samples over a short period of time is ideal. This study aimed to recommend an adequate sampling plan for field researchers obtaining microbial biomass for 16S rRNA gene sequencing, applicable specifically to low biomass oil and gas-producing environments. Forty-nine different samples were collected by filtering specific volumes of produced water from a hydraulically fractured well producing from the Niobrara Shale. Water was collected in two different sampling events 24 h apart. Four to five samples were collected from 11 specific volumes. These samples along with eight different blanks were submitted for analysis. DNA was extracted from each sample, and quantitative polymerase chain reaction (qPCR) and 16S rRNA Illumina MiSeq gene sequencing were performed to determine relative concentrations of biomass and microbial community composition, respectively. The qPCR results varied across sampled volumes, while no discernible trend correlated contamination to volume of water filtered. This suggests that collecting a larger volume of sample may not result in larger biomass concentrations or better representation of a sampled environment. Researchers could prioritize collecting many low volume samples over few high-volume samples. Our results suggest that there also may be variability in the concentration of microbial communities present in produced waters over short (i.e., hours) time scales, which warrants further investigation. Submission of multiple blanks is also vital to determining how contamination or low biomass effects may influence a sample set collected from an unknown environment
Dissecting and modeling photic and melanopsin effects to predict sleep disturbances induced by irregular light exposure in mice.
Artificial lighting, day-length changes, shift work, and transmeridian travel all lead to sleep-wake disturbances. The nychthemeral sleep-wake cycle (SWc) is known to be controlled by output from the central circadian clock in the suprachiasmatic nuclei (SCN), which is entrained to the light-dark cycle. Additionally, via intrinsically photosensitive retinal ganglion cells containing the photopigment melanopsin (Opn4), short-term light-dark alternations exert direct and acute influences on sleep and waking. However, the extent to which longer exposures typically experienced across the 24-h day exert such an effect has never been clarified or quantified, as disentangling sustained direct light effects (SDLE) from circadian effects is difficult. Recording sleep in mice lacking a circadian pacemaker, either through transgenesis (Syt10 <sup>cre/cre</sup> Bmal1 <sup>fl/-</sup> ) or SCN lesioning and/or melanopsin-based phototransduction (Opn4 <sup>-/-</sup> ), we uncovered, contrary to prevailing assumptions, that the contribution of SDLE is as important as circadian-driven input in determining SWc amplitude. Specifically, SDLE were primarily mediated (>80%) through melanopsin, of which half were then relayed through the SCN, revealing an ancillary purpose for this structure, independent of its clock function in organizing SWc. Based on these findings, we designed a model to estimate the effect of atypical light-dark cycles on SWc. This model predicted SWc amplitude in mice exposed to simulated transequatorial or transmeridian paradigms. Taken together, we demonstrate this SDLE is a crucial mechanism influencing behavior on par with the circadian system. In a broader context, these findings mandate considering SDLE, in addition to circadian drive, for coping with health consequences of atypical light exposure in our society
Fast stable direct fitting and smoothness selection for Generalized Additive Models
Existing computationally efficient methods for penalized likelihood GAM
fitting employ iterative smoothness selection on working linear models (or
working mixed models). Such schemes fail to converge for a non-negligible
proportion of models, with failure being particularly frequent in the presence
of concurvity. If smoothness selection is performed by optimizing `whole model'
criteria these problems disappear, but until now attempts to do this have
employed finite difference based optimization schemes which are computationally
inefficient, and can suffer from false convergence. This paper develops the
first computationally efficient method for direct GAM smoothness selection. It
is highly stable, but by careful structuring achieves a computational
efficiency that leads, in simulations, to lower mean computation times than the
schemes based on working-model smoothness selection. The method also offers a
reliable way of fitting generalized additive mixed models
Cotranslational N-degron masking by acetylation promotes proteome stability in plants
N-terminal protein acetylation (NTA) is a prevalent protein modification essential for viability in animals and plants. The dominant executor of NTA is the ribosome tethered N-alpha-acetyltransferase A (NatA) complex. However, the impact of NatA on protein fate is still enigmatic. Here, we demonstrate that depletion of NatA activity leads to a 4-fold increase in global protein turnover via the ubiquitin-proteasome system in Arabidopsis. Surprisingly, a concomitant increase in translation, actioned via enhanced Target-of-Rapamycin activity, is also observed, implying that defective NTA triggers feedback mechanisms to maintain steady-state protein abundance. Quantitative analysis of the proteome, the translatome, and the ubiquitome reveals that NatA substrates account for the bulk of this enhanced turnover. A targeted analysis of NatA substrate stability uncovers that NTA absence triggers protein destabilization via a previously undescribed and widely conserved nonAc/N-degron in plants. Hence, the imprinting of the proteome with acetylation marks is essential for coordinating proteome stability. N-terminal protein acetylation is required for plant viability. Here the authors show that reducing N-terminal acetylation by NatA leads to an increase in global protein turnover that is facilitated by absent masking of a novel N-degro
Kindlin-3 maintains marginal zone B cells but confines follicular B cell activation and differentiation
Integrin-mediated interactions between hematopoietic cells and their microenvironment are important for the development and function of immune cells. Here, the role of the integrin adaptor Kindlin-3 in B cell homeostasis is studied. Comparing the individual steps of B cell development in B cell-specific Kindlin-3 or alpha4 integrin knockout mice, we found in both conditions a phenotype of reduced late immature, mature, and recirculating B cells in the bone marrow. In the spleen, constitutive B cell-specific Kindlin-3 knockout caused a loss of marginal zone B cells and an unexpected expansion of follicular B cells. Alpha4 integrin deficiency did not induce this phenotype. In Kindlin-3 knockout B cells VLA-4 as well as LFA-1-mediated adhesion was abrogated, and short-term homing of these cells in vivo was redirected to the spleen. Upon inducible Kindlin-3 knockout, marginal zone B cells were lost due to defective retention within 2 weeks, while follicular B cell numbers were unaltered. Kindlin-3 deficient follicular B cells displayed higher IgD, CD40, CD44, CXCR5, and EBI2 levels, and elevated PI3K signaling upon CXCR5 stimulation. They also showed transcriptional signatures of spontaneous follicular B cell activation. This activation manifested in scattered germinal centers in situ, early plasmablasts differentiation, and signs of IgG class switch
Variational tetrahedral meshing
In this paper, a novel Delaunay-based variational approach to isotropic tetrahedral meshing is presented. To achieve both robustness and efficiency, we minimize a simple mesh-dependent energy through global updates of both vertex positions and connectivity. As this energy is known to be the â 1 distance between an isotropic quadratic function and its linear interpolation on the mesh, our minimization procedure generates well-shaped tetrahedra. Mesh design is controlled through a gradation smoothness parameter and selection of the desired number of vertices. We provide the foundations of our approach by explaining both the underlying variational principle and its geometric interpretation. We demonstrate the quality of the resulting meshes through a series of examples
NA60 results on thermal dimuons
The NA60 experiment at the CERN SPS has measured muon pairs with
unprecedented precision in 158A GeV In-In collisions. A strong excess of pairs
above the known sources is observed in the whole mass region 0.2<M<2.6 GeV. The
mass spectrum for M<1 GeV is consistent with a dominant contribution from
pi+pi- -> rho -> mu+mu- annihilation. The associated rho spectral function
shows a strong broadening, but essentially no shift in mass. For M>1 GeV, the
excess is found to be prompt, not due to enhanced charm production, with
pronounced differences to Drell-Yan pairs. The slope parameter Teff associated
with the transverse momentum spectra rises with mass up to the rho, followed by
a sudden decline above. The rise for M<1 GeV is consistent with radial flow of
a hadronic emission source. The seeming absence of significant flow for M>1 GeV
and its relation to parton-hadron duality is discussed in detail, suggesting a
dominantly partonic emission source in this region. A comparison of the data to
the present status of theoretical modeling is also contained. The accumulated
empirical evidence, including also a Planck-like shape of the mass spectra at
low pT and the lack of polarization, is consistent with a global interpretation
of the excess dimuons as thermal radiation. We conclude with first results on
omega in-medium effects.Comment: 10 pages, 12 figures, submitted to Eur. Phys. J.
Regulation of anti-apoptotic signaling by Kruppel-like factors 4 and 5 mediates lapatinib resistance in breast cancer
The Kruppel-like transcription factors (KLFs) 4 and 5 (KLF4/5) are coexpressed in mouse embryonic stem cells, where they function redundantly to maintain pluripotency. In mammary carcinoma, KLF4/5 can each impact the malignant phenotype, but potential linkages to drug resistance remain unclear. In primary human breast cancers, we observed a positive correlation between KLF4/5 transcript abundance, particularly in the human epidermal growth factor receptor 2 (HER2)-enriched subtype. Furthermore, KLF4/5 protein was rapidly upregulated in human breast cancer cells following treatment with the HER2/epidermal growth factor receptor inhibitor, lapatinib. In addition, we observed a positive correlation between these factors in the primary tumors of genetically engineered mouse models (GEMMs). In particular, the levels of both factors were enriched in the basal-like tumors of the C3(1) TAg (SV40 large T antigen transgenic mice under control of the C3(1)/prostatein promoter) GEMM. Using tumor cells derived from this model as well as human breast cancer cells, suppression of KLF4 and/or KLF5 sensitized HER2-overexpressing cells to lapatinib. Indicating cooperativity, greater effects were observed when both genes were depleted. KLF4/5-deficient cells had reduced basal mRNA and protein levels of the anti-apoptotic factors myeloid cell leukemia 1 (MCL1) and B-cell lymphoma-extra large (BCL-XL). Moreover, MCL1 was upregulated by lapatinib in a KLF4/5-dependent manner, and enforced expression of MCL1 in KLF4/5-deficient cells restored drug resistance. In addition, combined suppression of KLF4/5 in cultured tumor cells additively inhibited anchorage-independent growth, resistance to anoikis and tumor formation in immunocompromised mice. Consistent with their cooperative role in drug resistance and other malignant properties, KLF4/5 levels selectively stratified human HER2-enriched breast cancer by distant metastasis-free survival. These results identify KLF4 and KLF5 as cooperating protumorigenic factors and critical participants in resistance to lapatinib, furthering the rationale for combining anti-MCL1/BCL-XL inhibitors with conventional HER2-targeted therapies
- âŠ