154 research outputs found

    Diagnostic approach to Helicobacter pylori-related gastric oncogenesis.

    Get PDF
    Helicobacter pylori (H. pylori) is a causative agent of peptic ulcer disease and plays an important role in the development of various other upper and lower gastrointestinal tract and systemic diseases; in addition to carcinogenesis and the development of mucosa-associated lymphoid tissue lymphoma, extragastric manifestations of H. pylori are increasingly being unraveled. Therefore, prompt and accurate diagnosis is essential. Within this narrative review we present an overview of the current trend in the diagnosis of H. pylori infection and its potential oncogenic sequelae, including gastric mucosa atrophy, intestinal metaplasia, dysplasia and gastric cancer. Signs of H. pylori-related gastric cancer risk can be assessed by endoscopy using the Kyoto classification score. New technology, such as optical or digital chromoendoscopy, improves diagnostic accuracy and provides information regarding H. pylori-related gastric preneoplastic and malignant lesions. In addition, a rapid urease test or histological examination should be performed, as these offer a high diagnostic sensitivity; both are also useful for the diagnosis of sequelae including gastric and colon neoplasms. Culture is necessary for resistance testing and detecting H. pylori-related gastric dysbiosis involved in gastric oncogenesis. Likewise, molecular methods can be utilized for resistance testing and detecting H. pylori-related gastric cancer development and progression. Noninvasive tests, such as the urea breath and stool antigen tests, can also be implemented; these are also suitable for monitoring eradication success and possibly for detecting H. pylori-related gastric malignancy. Serological tests may help to exclude infection in specific populations and detect gastric and colon cancers. Finally, there are emerging potential diagnostic biomarkers for H. pylori-related gastric cancer

    Understanding oxygen anionic-electronic defects under high electric fields: Resistive switches devices

    Get PDF
    Nanoscale resistive switches (ReRAMs) were recently proposed as new class of non-volatile memories by switching non-linearly between low- and high-resistance values through application of voltage pulses in the ns-range. Through this paper we firstly introduce the topic of resistive switching oxides under high electric fields, their charge transport mechanism and often named memristive characteristics; and critically address open questions. In the second part we turn, to innovative new approaches in making of doped oxides and interface designs to novel device structures for oxide-based switches based on own results: Here, we will firstly discuss a mixed anionic electronic conductor model experiment, being a Gd-doped ceria series with tuned doping concentration to affect the defect association and mobility of the oxide switching bits in a systematic manner. We find a clear correlation between concentration and mobility of oxygen ionic carriers and resistive switching response, and discuss those down to the changes in the near order structures connected therein. Secondly, we exemplify the switching characteristics based on either compressively or tensely strained Gd0.1Ce0.9O2-x heterostructures modulated by Er2O3 or Sm2O3 layers, respectively, and discuss directly the device implication. Thereby, we present a new type of a model material device concept entitled a strained ReRAM . Here, new material engineering of oxides beyond doping is discussed to control resistive switching device properties like retention, Roff/Ron ratios and power consumption by interfacial strain engineering of mixed conducting oxide . Thirdly, we grow nanoscopically-flat LaFeO3 switching bits and demonstrate in a model experiment for amorphous and epitaxially grown films the implication of grain-boundary free but varying defect levels of the structures on resistive switching. Fourthly, we turn to the role of electric field and frequency dependencies of SrTiO3-based ReRAMs. Here, electrochemical impedance spectroscopy, cyclic voltammetry and chronoamperometry are used to investigate optimum operation concerning fast switching and stable retention with high resistance modulation. We show that two different switching mechanisms can be individually addressed depending on electric field strength and switching times. The Memristor-based Cottrell analysis is used to successfully determine diffusion constant characteristics of the materials and separating capacitive and memristive contributions. Finally, we conclude on the role of oxygen anionic-electronic carriers and transfer for oxide-based switches, and discuss the applicability for bits and circuits of potential memory and logic applications. References S. Schweiger, M. Kubicek, F. Messerschmitt, C. Murer, J.L.M. Rupp, ACS Nano, 8, 5, 5032, 2014. F. Messerschmitt, M. Kubicek, S. Schweiger, J.L.M. Rupp, Adv. Funct. Mater. 24, 47, 7448, 2014. F. Messerschmitt, M. Kubicek, J.L.M. Rupp, Adv. Funct. Mater. 25, 32, 5117, 2015. M. Kubicek, R. Schmitt, F. Messerschmitt, J.L.M. Rupp ACS Nano, 9, 11, 10737, 201

    68 Ga-PSMA-11 PET/MRI versus multiparametric MRI in men referred for prostate biopsy: primary tumour localization and interreader agreement

    Full text link
    Background: Magnetic resonance imaging (MRI) is recommended by the European Urology Association guidelines as the standard modality for imaging-guided biopsy. Recently positron emission tomography with prostate-specific membrane antigen (PSMA PET) has shown promising results as a tool for this purpose. The aim of this study was to compare the accuracy of positron emission tomography with prostate-specific membrane antigen/magnetic resonance imaging (PET/MRI) using the gallium-labeled prostate-specific membrane antigen (68Ga-PSMA-11) and multiparametric MRI (mpMRI) for pre-biopsy tumour localization and interreader agreement for visual and semiquantitative analysis. Semiquantitative parameters included apparent diffusion coefficient (ADC) and maximum lesion diameter for mpMRI and standardized uptake value (SUVmax) and PSMA-positive volume (PSMAvol) for PSMA PET/MRI. Results: Sensitivity and specificity were 61.4% and 92.9% for mpMRI and 66.7% and 92.9% for PSMA PET/MRI for reader one, respectively. RPE was available in 23 patients and 41 of 47 quadrants with discrepant findings. Based on RPE results, the specificity for both imaging modalities increased to 98% and 99%, and the sensitivity improved to 63.9% and 72.1% for mpMRI and PSMA PET/MRI, respectively. Both modalities yielded a substantial interreader agreement for primary tumour localization (mpMRI kappa = 0.65 (0.52-0.79), PSMA PET/MRI kappa = 0.73 (0.61-0.84)). ICC for SUVmax, PSMAvol and lesion diameter were almost perfect (≥ 0.90) while for ADC it was only moderate (ICC = 0.54 (0.04-0.78)). ADC and lesion diameter did not correlate significantly with Gleason score (ρ = 0.26 and ρ = 0.16) while SUVmax and PSMAvol did (ρ = - 0.474 and ρ = - 0.468). Conclusions: PSMA PET/MRI has similar accuracy and reliability to mpMRI regarding primary prostate cancer (PCa) localization. In our cohort, semiquantitative parameters from PSMA PET/MRI correlated with tumour grade and were more reliable than the ones from mpMRI. Keywords: ADC; Biopsy guidance; Interreader agreement; PET/MRI; PSMA PET; Primary staging; SUVmax; Targeted biopsy; Template biopsy; mpMRI

    BaiCD gene cluster abundance is negatively correlated with Clostridium difficile infection

    Get PDF
    Background Clostridium difficile infection (CDI) is a major cause of hospital-acquired diarrhea. Secondary bile acids were shown to confer resistance to colonization by C. difficile. 7 alpha-dehydroxylation is a key step in transformation of primary to secondary bile acids and required genes have been located in a single bile acid-inducible (bai) operon in C. scindens as well as in C. hiranonis, two Clostridium sp. recently reported to protect against C. difficile colonization. Aim To analyze baiCD gene abundance in C. difficile positive and negative fecal samples. Material & methods A species-specific qPCR for detecting baiCD genes was established. Fecal samples of patients with CDI, asymptomatic toxigenic C. difficile colonization (TCD), non-toxigenic C. difficile colonization (NTCD), of C. difficile negative (NC) patients, and of two patients before and after fecal microbiota transplantation (FMT) for recurrent CDI (rCDI) were tested for the presence of the baiCD genes. Results The prevalence of the baiCD gene cluster was significantly higher in C. difficile negative fecal samples than in samples of patients diagnosed with CDI (72.5% (100/138) vs. 35.9% (23/64;p<0.0001). No differences in baiCD gene cluster prevalence were seen between NC and NTCD or NC and TCD samples. Both rCDI patients were baiCD-negative at baseline, but one of the two patients turned positive after successful FMT from a baiCD-positive donor. Conclusion Fecal samples of CDI patients are less frequently baiCD-positive than samples from asymptomatic carriers or C. difficile-negative individuals. Furthermore, we present a case of baiCD positivity observed after successful FMT for rCDI

    Anchor Side Chains of Short Peptide Fragments Trigger Ligand-Exchange of Class II MHC Molecules

    Get PDF
    Class II MHC molecules display peptides on the cell surface for the surveillance by CD4+ T cells. To ensure that these ligands accurately reflect the content of the intracellular MHC loading compartment, a complex processing pathway has evolved that delivers only stable peptide/MHC complexes to the surface. As additional safeguard, MHC molecules quickly acquire a ‘non-receptive’ state once they have lost their ligand. Here we show now that amino acid side chains of short peptides can bypass these safety mechanisms by triggering the reversible ligand-exchange. The catalytic activity of dipeptides such as Tyr-Arg was stereo-specific and could be enhanced by modifications addressing the conserved H-bond network near the P1 pocket of the MHC molecule. It affected both antigen-loading and ligand-release and strictly correlated with reported anchor preferences of P1, the specific target site for the catalytic side chain of the dipeptide. The effect was evident also in CD4+ T cell assays, where the allele-selective influence of the dipeptides translated into increased sensitivities of the antigen-specific immune response. Molecular dynamic calculations support the hypothesis that occupation of P1 prevents the ‘closure’ of the empty peptide binding site into the non-receptive state. During antigen-processing and -presentation P1 may therefore function as important “sensor” for peptide-load. While it regulates maturation and trafficking of the complex, on the cell surface, short protein fragments present in blood or lymph could utilize this mechanism to alter the ligand composition on antigen presenting cells in a catalytic way

    Characterization of Structural Features Controlling the Receptiveness of Empty Class II MHC Molecules

    Get PDF
    MHC class II molecules (MHC II) play a pivotal role in the cell-surface presentation of antigens for surveillance by T cells. Antigen loading takes place inside the cell in endosomal compartments and loss of the peptide ligand rapidly leads to the formation of a non-receptive state of the MHC molecule. Non-receptiveness hinders the efficient loading of new antigens onto the empty MHC II. However, the mechanisms driving the formation of the peptide inaccessible state are not well understood. Here, a combined approach of experimental site-directed mutagenesis and computational modeling is used to reveal structural features underlying “non-receptiveness.” Molecular dynamics simulations of the human MHC II HLA-DR1 suggest a straightening of the α-helix of the β1 domain during the transition from the open to the non-receptive state. The movement is mostly confined to a hinge region conserved in all known MHC molecules. This shift causes a narrowing of the two helices flanking the binding site and results in a closure, which is further stabilized by the formation of a critical hydrogen bond between residues αQ9 and βN82. Mutagenesis experiments confirmed that replacement of either one of the two residues by alanine renders the protein highly susceptible. Notably, loading enhancement was also observed when the mutated MHC II molecules were expressed on the surface of fibroblast cells. Altogether, structural features underlying the non-receptive state of empty HLA-DR1 identified by theoretical means and experiments revealed highly conserved residues critically involved in the receptiveness of MHC II. The atomic details of rearrangements of the peptide-binding groove upon peptide loss provide insight into structure and dynamics of empty MHC II molecules and may foster rational approaches to interfere with non-receptiveness. Manipulation of peptide loading efficiency for improved peptide vaccination strategies could be one of the applications profiting from the structural knowledge provided by this study

    Intergenerational impacts of maternal mortality: Qualitative findings from rural Malawi

    Get PDF
    Background: Maternal mortality, although largely preventable, remains unacceptably high in developing countries such as Malawi and creates a number of intergenerational impacts. Few studies have investigated the far-reaching impacts of maternal death beyond infant survival. This study demonstrates the short- and long-term impacts of maternal death on children, families, and the community in order to raise awareness of the true costs of maternal mortality and poor maternal health care in Neno, a rural and remote district in Malawi. Methods: Qualitative in-depth interviews were conducted to assess the impact of maternal mortality on child, family, and community well-being. We conducted 20 key informant interviews, 20 stakeholder interviews, and six sex-stratified focus group discussions in the seven health centers that cover the district. Transcripts were translated, coded, and analyzed in NVivo 10. Results: Participants noted a number of far-reaching impacts on orphaned children, their new caretakers, and extended families following a maternal death. Female relatives typically took on caregiving responsibilities for orphaned children, regardless of the accompanying financial hardship and frequent lack of familial or governmental support. Maternal death exacerbated children’s vulnerabilities to long-term health and social impacts related to nutrition, education, employment, early partnership, pregnancy, and caretaking. Impacts were particularly salient for female children who were often forced to take on the majority of the household responsibilities. Participants cited a number of barriers to accessing quality child health care or support services, and many were unaware of programming available to assist them in raising orphaned children or how to access these services. Conclusions: In order to both reduce preventable maternal mortality and diminish the impacts on children, extended families, and communities, our findings highlight the importance of financing and implementing universal access to emergency obstetric and neonatal care, and contraception, as well as social protection programs, including among remote populations

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)
    corecore