84 research outputs found

    Screening of microbial communities associated with endive lettuce during postharvest processing on industrial scale

    Get PDF
    In this study, the composition of the microbial community on endive lettuce (Cichorium endivia) was evaluated during different postharvest processing steps. Microbial community structure was characterized by culture-dependent and culture-independent methods. Endive lettuce was sampled exemplarily at four different stages of processing (raw material, cut endive lettuce, washed endive lettuce, and spin-dried (ready to pack) endive lettuce) and analysed by plate count analysis using non-selective and selective agar plates with subsequent identification of bacteria colonies by matrix-assisted laser desorption/ionization time-of light mass spectrometry (MALDI-TOF MS). Additionally, terminal-restriction fragment length polymorphism (TRFLP) analysis and 16S rRNA gene nucleotide sequence analysis were conducted. The results revealed structural differences in the lettuce microbiomes during the different processing steps. The most predominant bacteria on endive lettuce were detected by almost all methods. Bacterial species belonging to the families Pseudomonadaceae, Enterobacteriaceae, Xanthomonadaceae, and Moraxellaceae were detected in most of the examined samples including some unexpected potentially human pathogenic bacteria, especially those with the potential to build resistance to antibiotics (e.g., Stenotrophomonas maltophilia (0.9 % in cut sample, 0.4 % in spin-dried sample), Acinetobacter sp. (0.6 % in raw material, 0.9 % in cut sample, 0.9 % in washed sample, 0.4 % in spin-dried sample), Morganella morganii (0.2 % in cut sample, 3 % in washed sample)) revealing the potential health risk for consumers. However, more seldom occurring bacterial species were detected in varying range by the different methods. In conclusion, the applied methods allow the determination of the microbiome's structure and its dynamic changes during postharvest processing in detail. Such a combined approach enables the implementation of tailored control strategies including hygienic design, innovative decontamination techniques, and appropriate storage conditions for improved product safety

    Up-regulation of the anti-inflammatory adipokine adiponectin in acute liver failure in mice

    Get PDF
    BACKGROUND/AIMS: Recent reports suggest that the adipose tissue and adipokines are potent modulators of inflammation. However, there is only scarce knowledge on the functional role and regulation of endogenous adiponectin in non-fat tissues such as the liver under conditions of acute inflammation. METHODS: In the present study, we investigated adiponectin expression in healthy murine liver tissue and under inflammatory conditions in vivo. RESULTS: Adiponectin mRNA was readily detectable in healthy liver tissue and further increased in ConA-mediated acute liver failure. Adiponectin protein expression was mainly found in hepatic endothelial cells. In vitro adiponectin mRNA expression was detectable in several cell types, including primary hepatic sinusoidal endothelial cells, stellate cells, and macrophages. Mice pretreated with adiponectin before ConA administration developed reduced hepatic injury as shown by decreased release of transaminases and reduced hepatocellular apoptotis. Of note, TNF-alpha levels were not affected by adiponectin, whereas IL-10 production was increased. Neutralisation of IL-10 diminished the protective effect of adiponectin. CONCLUSIONS: Adiponectin expression is up-regulated in ConA-mediated acute liver failure. Therefore, adiponectin might play a role in the control and limitation of inflammation in the liver. Moreover, our data suggest a role for IL-10 in adiponectin-mediated hepatoprotection

    Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: a review

    Get PDF
    peer-reviewedThis review, focusing on studies published between 2005 and 2017, analysed the literature on the generation of bioactive peptides (BAPs) from edible insect proteins following enzymatic hydrolysis. The protein extraction and quantification methodologies used for edible insects varied considerably. While several edible insects have been evaluated for their ability to release BAPs, silkworm (Bombyx mori) is currently the most studied. Specifically, the angiotensin converting enzyme (ACE) inhibitory, antioxidant and antidiabetic properties of edible insect protein enzymatic hydrolysates have been studied. Potent in vitro ACE inhibitory and antioxidant hydrolysates/peptides have been reported. In certain instances, these properties were validated in small animal studies (i.e. hypotensive effects). Enzymatic hydrolysis of edible insect proteins may also enhance technofunctional properties (i.e. solubility). The wider application of enzymatic hydrolysis protocols to edible insect proteins may ultimately allow for the increased discovery and utilisation of novel BAPs as sustainable protein/peptide sources for human nutrition.ACCEPTEDpeer-reviewe
    • …
    corecore