18 research outputs found

    Enantioselective Hydroxylation of Benzylic C(sp; 3; )-H Bonds by an Artificial Iron Hydroxylase Based on the Biotin-Streptavidin Technology

    Get PDF
    The selective hydroxylation of C-H bonds is of great interest to the synthetic community. Both homogeneous catalysts and enzymes offer complementary means to tackle this challenge. Herein, we show that biotinylated Fe(TAML)-complexes (TAML = Tetra Amido Macrocyclic Ligand) can be used as cofactors for incorporation into streptavidin to assemble artificial hydroxylases. Chemo-genetic optimization of both cofactor and streptavidin allowed optimizing the performance of the hydroxylase. Using H; 2; O; 2; as oxidant, up to ∼300 turnovers for the oxidation of benzylic C-H bonds were obtained. Upgrading the ee was achieved by kinetic resolution of the resulting benzylic alcohol to afford up to >98% ee for (; R; )-tetralol. X-ray analysis of artificial hydroxylases highlights critical details of the second coordination sphere around the Fe(TAML) cofactor

    Electron-momentum dependence of electron-phonon coupling underlies dramatic phonon renormalization in YNi2_{2}B2_{2}C

    Get PDF
    Electron-phonon coupling, i.e., the scattering of lattice vibrations by electrons and vice versa, is ubiquitous in solids and can lead to emergent ground states such as superconductivity and charge-density wave order. A broad spectral phonon line shape is often interpreted as a marker of strong electron-phonon coupling associated with Fermi surface nesting, i.e., parallel sections of the Fermi surface connected by the phonon momentum. Alternatively broad phonons are known to arise from strong atomic lattice anharmonicity. Here, we show that strong phonon broadening can occur in the absence of both Fermi surface nesting and lattice anharmonicity, if electron-phonon coupling is strongly enhanced for specific values of electron- momentum, k. We use inelastic neutron scattering, soft x-ray angle-resolved photoemission spectroscopy measurements and ab-initio lattice dynamical and electronic band structure calculations to demonstrate this scenario in the highly anisotropic tetragonal electron-phonon superconductor YNi2B2C. This new scenario likely applies to a wide range of compounds

    Uniaxial strain-induced phase transition in the 2D topological semimetal IrTe2

    Full text link
    Strain is ubiquitous in solid-state materials, but despite its fundamental importance and technological relevance, leveraging externally applied strain to gain control over material properties is still in its infancy. In particular, strain control over the diverse phase transitions and topological states in two-dimensional transition metal dichalcogenides remains an open challenge. Here, we exploit uniaxial strain to stabilize the long-debated structural ground state of the 2D topological semimetal IrTe2_{2}, which is hidden in unstrained samples. Combined angle-resolved photoemission spectroscopy and scanning tunneling microscopy data reveal the strain-stabilized phase has a 6 × 1 periodicity and undergoes a Lifshitz transition, granting unprecedented spectroscopic access to previously inaccessible type-II topological Dirac states that dominate the modified inter-layer hopping. Supported by density functional theory calculations, we show that strain induces an Ir to Te charge transfer resulting in strongly weakened inter-layer Te bonds and a reshaped energetic landscape favoring the 6×1 phase. Our results highlight the potential to exploit strain-engineered properties in layered materials, particularly in the context of tuning inter-layer behavior

    Phase separation in the vicinity of Fermi surface hot spots

    Get PDF
    Spatially inhomogeneous electronic states are expected to be key ingredients for the emergence of superconducting phases in quantum materials hosting charge-density waves (CDWs). Prototypical materials are transitionmetal dichalcogenides (TMDCs) and among them, 1T-TiSe2 exhibiting intertwined CDW and superconducting states under Cu intercalation, pressure, or electrical gating. Although it has been recently proposed that the emergence of superconductivity relates to CDW fluctuations and the development of spatial inhomogeneities in the CDW order, the fundamental mechanism underlying such a phase separation (PS) is still missing. Using angle- resolved photoemission spectroscopy and variable-temperature scanning tunneling microscopy, we report on the phase diagram of the CDW in 1T-TiSe2 as a function of Ti self-doping, an overlooked degree of freedom inducing CDW texturing. We find an intrinsic tendency towards electronic PS in the vicinity of Fermi surface (FS) “hot spots,” i.e., locations with band crossigs close to, but not at the Fermi level.We therefore demonstrate an intimate relationship between the FS topology and the emergence of spatially textured electronic phases which is expected to be generalizable to many doped CDW compound

    Break of symmetry at the surface of IrTe<sub>2</sub> upon phase transition measured by x-ray photoelectron diffraction

    No full text
    IrTe2 undergoes a series of charge-ordered phase transitions below room temperature that are characterized by the formation of stripes of Ir dimers of different periodicities. Full hemispherical x-ray photoelectron diffraction (XPD) experiments have been performed to investigate the atomic position changes undergone near the surface of 1T-IrTe2 in the first-order phase transition, from the (1 × 1) phase to the (5 × 1) phase. Comparison between experiment and simulation allows us to identify the consequence of the dimerization on the Ir atoms local environment. We report that XPD permits to unveil the break of symmetry of IrTe2 trigonal to a monoclinic unit cell and confirm the occurrence of the (5 × 1) reconstruction within the first few layers below the surface with a staircase-like stacking of dimers.</p

    Break of symmetry at the surface of IrTe2 upon phase transition measured by x-ray photoelectron diffraction

    Full text link
    IrTe2 undergoes a series of charge-ordered phase transitions below room temperature that are characterized by the formation of stripes of Ir dimers of different periodicities. Full hemispherical x-ray photoelectron diffraction (XPD) experiments have been performed to investigate the atomic position changes undergone near the surface of 1T-IrTe2 in the first-order phase transition, from the (1 × 1) phase to the (5 × 1) phase. Comparison between experiment and simulation allows us to identify the consequence of the dimerization on the Ir atoms local environment. We report that XPD permits to unveil the break of symmetry of IrTe2 trigonal to a monoclinic unit cell and confirm the occurrence of the (5 × 1) reconstruction within the first few layers below the surface with a staircase-like stacking of dimers

    Ultrafast dynamics of the surface photovoltage in potassium-doped black phosphorus

    Full text link
    Black phosphorus is a quasi-two-dimensional layered semiconductor with a narrow direct band gap of 0.3 eV. A giant surface Stark effect can be produced by the potassium doping of black phosphorus, leading to a semiconductor to semimetal phase transition originating from the creation of a strong surface dipole and associated band bending. By using time- and angle-resolved photoemission spectroscopy, we report the partial photoinduced screening of this band bending by the creation of a compensating surface photovoltage. We further resolve the detailed dynamics of this effect at the pertinent timescales and the related evolution of the band structure near the Fermi level. We demonstrate that after a fast rise time, the surface photovoltage exhibits a plateau over a few tens of picoseconds before decaying on the nanosecond timescale. We support our experimental results with simulations based on drift-diffusion equations

    Insensitivity of the striped charge orders in IrTe2{\mathrm{IrTe}}_{2} to alkali surface doping implies their structural origin

    No full text
    We present a combined angle-resolved photoemission spectroscopy and low-energy electron diffraction (LEED) study of the prominent transition metal dichalcogenide IrTe2 upon potassium (K) deposition on its surface. Pristine IrTe2 undergoes a series of charge-ordered phase transitions below room temperature that are characterized by the formation of stripes of Ir dimers of different periodicities. Supported by density functional theory calculations, we first show that the K atoms dope the topmost IrTe2 layer with electrons, therefore strongly decreasing the work function and shifting only the electronic surface states towards higher binding energy. We then follow the evolution of its electronic structure as a function of temperature across the charge- ordered phase transitions and observe that their critical temperatures are unchanged for K coverages of 0.13 and 0.21 monolayer. Using LEED we also confirm that the periodicity of the related stripe phases is unaffected by the K doping. We surmise that the charge-ordered phase transitions of IrTe2 are robust against electron surface doping, because of its metallic nature at all temperatures, and due to the importance of structural effects in stabilizing charge order in IrTe2
    corecore