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ABSTRACT: The selective hydroxylation of C−H bonds is of great interest to the synthetic community. Both homogeneous
catalysts and enzymes offer complementary means to tackle this challenge. Herein, we show that biotinylated Fe(TAML)-complexes
(TAML = Tetra Amido Macrocyclic Ligand) can be used as cofactors for incorporation into streptavidin to assemble artificial
hydroxylases. Chemo-genetic optimization of both cofactor and streptavidin allowed optimizing the performance of the hydroxylase.
Using H2O2 as oxidant, up to ∼300 turnovers for the oxidation of benzylic C−H bonds were obtained. Upgrading the ee was
achieved by kinetic resolution of the resulting benzylic alcohol to afford up to >98% ee for (R)-tetralol. X-ray analysis of artificial
hydroxylases highlights critical details of the second coordination sphere around the Fe(TAML) cofactor.

The selective functionalization of C−H bonds represents
one of the frontiers in synthetic methodology.1−7 To

address this challenge, homogeneous catalysis often relies on
directing groups present on the substrate that coordinate to the
metal center, thus allowing distinguishing between equally
reactive C−H bonds.7 Enzymes have been optimized thanks to
evolution to differentiate C−H bonds with exquisite selectivity:
The active site around the cofactor is tailored to ensure proper
orientation of the substrate.
For the hydroxylation of inert C−H bonds, iron-containing

enzymes and iron-based homogeneous catalysts occupy a place
of choice. They are complementary in many respects. While
the former operate under physiological conditions, homoge-
neous catalysts perform best at low temperature in organic
solvents. The reactivity of homogeneous catalysts is often
tuned via first-coordination sphere modifications, whereas
enzymes rely on secondary sphere interactions.
Iron metalloenzymes catalyze the C−H oxyfunctionalization

of hydrocarbons via iron−oxygen species resulting from
activation of O2.

8−17 The selective hydroxylation of C−H
bonds using homogeneous catalysts has been achieved by
designing structurally elaborated ligands that provide a tailored
cavity around the metal center.18−33

To complement homogeneous catalysts and enzymes,
artificial metalloenzymes (ArMs), that result from anchoring
an abiotic cofactor within a macromolecular scaffold, have
attracted increasing interest in the past years. The well-defined
secondary coordination sphere around the cofactor provided
by the protein offers fascinating perspectives to optimize both
activity and selectivity of the ArMs.34−39 In this context several
protein scaffolds have proven versatile.34 These include
carbonic anhydrase,40 hemoproteins,41,42 proline oligopepti-
dase,43 lactococcal multiresistance regulator,44 four helix
bundles,45,46 nitrobindin,47 (strept)avidin,48−50 etc. In the

context of asymmetric C−H hydroxylation, introduction of a
Mn-porphycene cofactor within myoglobin afforded promising
ArMs51 that complement evolved cytochrome P450 en-
zymes.52−54

Fe(TAML) complexes are a versatile family of iron
complexes that typically contain a ferric center tightly bound
to a tetraamido macrocyclic ligand.55,56 Their reactivity as
peroxidase mimics has been extensively studied.55,57,58 Some
Fe(TAML) complexes hydroxylate hydrocarbons in aqueous
media using oxidants such as tBuOOH or m-CPBA56,59−61 or
electrochemically.62 Thanks to their stability in water, we
surmised that Fe(TAML) complexes may allow assembly of an
iron-based artificial hydroxylase using the biotin−streptavidin
technology. The secondary coordination sphere provided by
streptavidin (Sav) may enable enantioselective hydroxylation
and minimize the formation of less reactive diiron dimeric
species.
Initial Ligand Design and Reactivity Tests. Sav is a

homotetrameric protein that displays exceptional affinity for
biotinylated probes (Kd 10−14 M) and maintains its function
and quaternary structure in the presence of various chaotropic
agents (pH, temperature, cosolvent tolerance, etc.).48,50,63 To
ensure localization of the TAML cofactor within Sav, we
synthesized a complex bearing a biotin anchor, biotC5−1. The
anchor was designed to bind to the Fe-TAML moiety through
an “inverted” amide bond to the aromatic ring (Scheme 1a) to

Received: March 11, 2020
Published: May 26, 2020

Communicationpubs.acs.org/JACS

© 2020 American Chemical Society
10617

https://dx.doi.org/10.1021/jacs.0c02788
J. Am. Chem. Soc. 2020, 142, 10617−10623

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joan+Serrano-Plana"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Corentin+Rumo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Johannes+G.+Rebelein"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ryan+L.+Peterson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maxime+Barnet"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Thomas+R.+Ward"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Thomas+R.+Ward"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jacs.0c02788&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c02788?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c02788?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c02788?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c02788?goto=supporting-info&ref=pdf
https://pubs.acs.org/toc/jacsat/142/24?ref=pdf
https://pubs.acs.org/toc/jacsat/142/24?ref=pdf
https://pubs.acs.org/toc/jacsat/142/24?ref=pdf
https://pubs.acs.org/toc/jacsat/142/24?ref=pdf
pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/jacs.0c02788?ref=pdf
https://pubs.acs.org/JACS?ref=pdf
https://pubs.acs.org/JACS?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_termsofuse.html


increase the electron-withdrawing effect, which has been
shown to be beneficial for the reactivity of Fe-TAML
complexes.64

Scheme 1. Artificial C−H Hydroxylase Based on Biotin−
Streptavidin: (a) Structure of Cofactors biotC4−1 and
biotC5−1a; (b) Representation of the ArM Resulting from
Anchoring biotCn−1 in Streptavidin

aTo increase the electron-withdrawing property of the ligand, a biotin
amine was coupled to Fe-TAML (green) bearing a carboxylic acid to
afford an “inverted” amide (blue).

Scheme 2. Fingerprint Summary of the Artificial
Hydroxylase Optimization with PhEt

Figure 1. Crystallographic characterization of biotC4−1·Sav WT (a,
PDB: 6Y2T), biotC4−1·Sav S112R (b, PDB: 6Y2M), and biotC4−1·
Sav S112R/K121E (c, PDB: 6Y25). Sav is depicted as orange cartoon,
and its surface representation in gray and mauve (for SavA and SavB

monomers, respectively). The cofactor and relevant amino acids are
depicted as sticks. The Fe atoms are depicted as spheres and
surrounded by their anomalous electron density (red mesh at 5 σ).
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Initial reactivity tests were performed with ethylbenzene
(PhEt, BDEC−H = 87 kcal/mol) using 2 equivalents of H2O2 in
phosphate buffer (KPB) at pH 8.2 and 40% acetone for 3
h.61,65 Under these conditions, biotC5−1·Sav WT afforded
(rac)-1-phenylethanol ((rac)-PhEtOH)) and acetophenone
(total turnover number, TTON,66= 23). Both activity and
selectivity of biotC5−1·Sav WT were comparable to the free
cofactor biotC5−1 (TTON = 21, (rac)-PhEtOH). Next, we
screened a Sav library that included mutations at positions Sav
S112X and/or Sav K121X (Scheme 2 and Table S4). The
TTON and enantioselectivity remained moderate (up to 16%
ee (R)-PhEtOH and TTON = 29). We hypothesized that the
moderate influence of the host protein on the catalytic
performance may be due to the poor localization of the Fe-
TAML within the biotin-binding vestibule. We surmised that a
shorter biotin Cn-linker may increase the influence of Sav on
the catalytic performance by positioning the metal center
deeper within the binding pocket. We prepared biotC4−1 and
evaluated its performance (Schemes 1, 2 and Table S4).
Shortening the Cn-linker positively affects the selectivity:

biotC4−1·Sav WT affords 6% ee (R)-PhEtOH. Screening the
above Sav library with biotC4−1 reveals that close-lying amino
acids influence the ee: biotC4−1·Sav S112R yields 28% ee (R)-
PhEtOH (TTON = 28), and biotC4−1·Sav S112R/K121E
affords 24% ee (S)-PhEtOH (TTON = 29).
Intrigued by these findings, the oxidation of PhEt by

biotC4−1·Sav S112R was monitored. Two consecutive
oxidation steps take place. Initially, hydroxylation of the
benzylic position affords (R)-PhEtOH with ee >40% after a
few TTONs (Figure S8). As the reaction progresses, the
formation of acetophenone is observed along with a gradual
erosion of the ee. This suggests that the alcohol oxidation is
(partially) stereospecific: (R)-PhEtOH is oxidized preferen-
tially to acetophenone. Indeed, kinetic resolution of (rac)-
PhEtOH by biotC4−1·Sav S112R affords acetophenone
(TTON = 38), leaving enantioenriched (S)-PhEt (20% ee
after 3 h, E = k(R)/k(S) = 3.4, Figure S9).
In contrast, product analysis after PhEt oxidation by biotC4−

1·Sav (Sav: K121R or S112R/K121E) yielded ee of (S)-
PhEtOH (Scheme 2), the opposite enantiomer than biotC4−1·
Sav S112R. However, monitoring product formation over time
reveals a similar reaction pathway for all three ArMs: The

hydroxylation of PhEt yields preferentially (R)-PhEtOH, which
is then oxidized faster to acetophenone (Figures S10−S11).
This mechanistic pathway is reflected in an erosion of ee over
time, eventually affording (S)-PhEtOH with both Sav K121R
and Sav S112R/K121E. Indeed, the ee is highly variable,
depending on conversion and mutant.
The reaction conditions to improve the performance of the

hydroxylase were fine-tuned for biotC4−1·Sav S112R. A large
excess of H2O2 favors overoxidation and erosion of ee (Figure
S13). The impact of Sav on the activity is also evident at
different pH’s: biotC4−1·Sav S112R displays maximum TTON

Table 1. Benzylic C−H Oxidations Catalyzed by biotC4−1·
Sav S112Ra

aConditions: 25 μM biotC4−1·Sav S112R (50 μM Fe), 20 mM
substrate, 20 mM H2O2, 50 mM KPB pH 8.5, 35% acetone, 2.5%
MeCN, 3 h at 25 °C. b10 mM substrate, 25 mM H2O2, to promote
alcohol overoxidation which yields increased ee. cSee Table S6 for
more details.

Scheme 3. Enantioselective Hydroxylation of Tetralin and
Kinetic Resolution of Tetralol by biotC4−1·Sav S112R: (a)
Consecutive Oxidation Scheme; (b) Time Course of
Tetralin Oxidation (Inset: Kinetic Resolution Affords >98%
ee (R)-Tetralol and TTON = 300); (c) Time Course of the
Kinetic Resolution of rac-Tetralol by biotC4−1·Sav S112R
(Inset: Kinetic Resolution Yields >99% ee (R)-Tetralol
(TTON = 220); See SI for Details)
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and enantioselectivity at 8.2 < pH < 8.8. Outside this window,
the activity decreases markedly (Figure S14). The free cofactor
biotC4−1 has maximum activity at 6 < pH < 8 and is quenched
at higher pH.
Structural Characterization. To scrutinize the differences in

the second coordination sphere that influence the activity of
the ArMs, we determined their structure by crystallography.
Data sets were obtained for biotC4−1·Sav and biotC5−1·Sav
(Sav = WT, S112R, and S112R/K121E, Tables S1 and S2).
The structures reveal the following features: all six structures

are nearly superimposable, reflected by a Cα−RMSD varying
between 0.038 and 0.256 Å (Table S3). The electron density
of the Fe-TAML moiety is defined for biotC4−1; the Fe-
occupancy is 60% for Sav WT and 100% for Sav S112R and
S112R/K121E (Figure 1). This contrasts with biotC5−1, for
which only the electron density of the biotin C5−linker is
defined and modeled with 100% occupancy (Figures S5−S7).
We tentatively trace this to the higher flexibility of the C5-
linker, resulting in delocalization of the Fe-TAML moiety.
The localization of the Fe(TAML) moiety is affected by the

residue at position 112 (Figures 1 and S2−S4). For biotC4−1·
Sav WT, the closest amino acids, are SavA S112 (3.7 Å) and
SavB K121′ (4.2 Å). They hardly interact with Fe(TAML),
resulting in a reduced occupancy of Fe(TAML). The mutation
Sav S112R forces the Fe(TAML) into a fixed conformation
with 100% occupancy, placing the arginine within H-bonding
distance to the CO of the Fe(TAML) (2.5 Å, in one of two
conformations, Figure 1b). This alternative position of
Fe(TAML) allows SavB K121′ to coordinate to Fe of
biotC4−1·SavA (2.3 Å, Figure 1b). To enable the coordination
of SavB K121′ to the Fe of biotC4-1, the lysine side chain
adopts a compact conformation with acute dihedral (χ) angles
of 54.2°, 106.9°, 80.0°, and 41.2°. We hypothesize that both
the precise localization of the Fe(TAML) and its interaction
with either K121′ or E121′ through an η2-coordination (in
biotC4−1·Sav S112R/K121E, Fe···O 2.3 and 2.9 Å, Figure 1c)
impact the catalysis outcome (product distribution and ee,
Scheme 2).
Substrate Scope. The substrate scope for biotC4−1·Sav

S112R was expanded to substrates containing benzylic
C(sp3)−H bonds (Table 1). Propylbenzene and butylbenzene
afforded the corresponding (R)-alcohol in 45% ee (TTON =
26 and 19, respectively). Electron-rich p-substituted ethyl-
benzenes afforded higher TTONs, highlighting the electro-
philic character of the Fe(O) species (Figure S15).
A kinetic isotope effect KIE = 9.2 was determined for the

oxidation of PhEt/PhEt-d10 by biotC4−1·Sav S112R at 25 °C
(Figure S16). This value compares well with the previously
described KIE for Fe-TAML complexes and suggests that the

rate-determining step of the reaction is the hydrogen
abstraction.56,60,67,68

The oxidation of indane and tetralin (BDEC−H = 87 and 85.7
kcal/mol)69 afforded high TTONs (TTON = 205 and 316,
respectively) and good ee in favor of the (R)-alcohol (47% and
65% ee, respectively, Table 1).
Prompted by the good TTON and ee for tetralin, its

oxidation by biotC4−1·Sav S112R was scrutinized. Using 2.5
equivalents of H2O2, 73% ee of (R)-tetralol was determined at
early stages (Scheme 3a). In contrast to PhEt oxidation, the ee
increased with conversion, highlighting the preferential (over)-
oxidation of (S)-tetralol. After 3 h, >98% ee (R)-tetralol was
obtained (TTON = 300, Scheme 3b). Minimal overoxidation
at the second benzylic position was also detected (Figure S17).
Oxidation of (rac)-tetralol with biotC4−1·Sav S112R yielded
tetralone and >99% ee of (R)-tetralol (unreacted starting
material) after ∼120 min (Scheme 3c, E = k(S)/k(R) = 2.7, and
Figure S18). Similarly, a TTON of 173 was obtained for
indane oxidation (80% ee (R)-indanol, Figure S19). Thus, (R)-
benzyl-alcohol derivatives are preferentially overoxidized, while
the (S)-enantiomers of the cyclic derivatives (tetralol and
indanol) are oxidized faster. This phenomenon can be
attributed to the 1,3-allylic strain (Scheme S2).70,71

Lastly, we developed an enzymatic cascade with Glucose
Oxidase (GO) to enable the in situ production of H2O2, using
O2 as oxidant and glucose as reductant (Scheme 4).72 To our
delight, after combining biotC4−1·Sav S112R and GO the
oxidation reactions progressed in a similar way compared to
the single batch addition of H2O2. A TTON of 50 was
obtained for PhEt oxidation, with an initial ee of (R)-PhEtOH
of 47%, which eroded to 37% after kinetic resolution. For
tetralin, a TTON of 170 was obtained, again observing the
initial formation of (R)-tetralol in 64% ee and posterior kinetic
resolution that upgraded it to up to 95%.
Catalysts derived from earth-abundant metals are gaining

attention in homogeneous catalysis. The inherent lability of
most such systems however limits their use in water. In
contrast to polypyridinamine-derived catalysts,73 and thanks to
its remarkable stability and catalytic activity, the Fe(TAML)
system proved amenable to the design and optimization of an
artificial hydroxylase based on the biotin−streptavidin
technology.
Chemogenetic optimization of the catalytic performance led

to the identification of biotC4−1·Sav S112R as our best
hydroxylase for the oxidation of benzylic C−H bonds. With in
vivo applications in mind, we have shown that the activity of
the artificial hydroxylase is compatible with glucose oxidase,
using O2 as the terminal oxidant.
Efforts at modulating the activity of the hydroxylase by fine-

tuning the cofactors’ structure, and expanding the substrate
scope toward the oxidation of more complex molecules, are
currently underway.
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Scheme 4. Cascade with GO To Generate H2O2 in Situ,
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aSee SI.
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