1,016 research outputs found

    Recovering star formation histories: Integrated-light analyses vs stellar colour-magnitude diagrams

    Full text link
    Accurate star formation histories (SFHs) of galaxies are fundamental for understanding the build-up of their stellar content. However, the most accurate SFHs - those obtained from colour-magnitude diagrams (CMDs) of resolved stars reaching the oldest main sequence turnoffs (oMSTO) - are presently limited to a few systems in the Local Group. It is therefore crucial to determine the reliability and range of applicability of SFHs derived from integrated light spectroscopy, as this affects our understanding of unresolved galaxies from low to high redshift. To evaluate the reliability of current full spectral fitting techniques in deriving SFHs from integrated light spectroscopy by comparing SFHs from integrated spectra to those obtained from deep CMDs of resolved stars. We have obtained a high signal--to--noise (S/N \sim 36.3 per \AA) integrated spectrum of a field in the bar of the Large Magellanic Cloud (LMC) using EFOSC2 at the 3.6 meter telescope at La Silla Observatory. For this same field, resolved stellar data reaching the oMSTO are available. We have compared the star formation rate (SFR) as a function of time and the age-metallicity relation (AMR) obtained from the integrated spectrum using {\tt STECKMAP}, and the CMD using the IAC-star/MinnIAC/IAC-pop set of routines. For the sake of completeness we also use and discuss other synthesis codes ({\tt STARLIGHT} and {\tt ULySS}) to derive the SFR and AMR from the integrated LMC spectrum. We find very good agreement (average differences \sim 4.1 %\%) between the SFR(t) and the AMR obtained using {\tt STECKMAP} on the integrated light spectrum, and the CMD analysis. {\tt STECKMAP} minimizes the impact of the age-metallicity degeneracy and has the advantage of preferring smooth solutions to recover complex SFHs by means of a penalized χ2\chi^2. [abridged]Comment: 23 pages, 24 figures. Accepted for publication in A&A (6 Sep 2015

    Transformación de un BICC en un BIP

    Get PDF
    Este TFG tiene como objetivo principal facilitar la transformación de un BICC (Batallón de infantería de carros de combate) a un BIP (Batallón de infantería protegido) en base al futuro vehículo ruedas 8x8 Dragón. Para alcanzar este objetivo se ha establecido un grupo de expertos lo más variado posible para abarcar la mayor cantidad de conocimientos. Se han elaborado cuestionarios y entrevistas al grupo para obtener la información necesaria para llevar a cabo este trabajo. A su vez, se han consultado diferentes publicaciones doctrinales para aumentar la información y obtener un punto de vista más amplio acerca de la transformación. Y se han aplicado diversas metodologías cuantitativas y cualitativas como herramientas de ayuda a la decisión. Actualmente el BON UAD RAS II/61 está sufriendo una adaptación orgánica de BICC a BIP. Es decir, tiene que transformarse en algo nuevo, con nuevos vehículos y el mismo personal en un corto espacio de tiempo. Se ha estudiado la particularidad de la transformación del batallón y se han realizado propuestas para complementar las jornadas de actualización que había fijado el batallón para completar la instrucción y el adiestramiento de su personal. Además, se ha establecido un método de control para la moral y cohesión de la unidad tras el estudio de los resultados obtenidos en un cuestionario que el autor de este trabajo ha confeccionado. Se ha asentado una base de datos para comprobar la evolución de la moral y la cohesión de la unidad y se han propuesto una serie de actividades de instrucción para mejorar estos aspectos. Por otra parte, se ha llevado a cabo el estudio de las plantillas orgánicas actuales del BICC y del BIP. Actualmente no existe una plantilla orgánica de personal y material para el BIP en base al futuro vehículo 8x8 Dragón. Por ello, se ha procedido a elaborar dos propuestas de personal, materiales y cursos de formación. Se han enfrentado estas dos propuestas mediante herramientas metodológicas de decisión Multicriterio (Analytic Hierarchy Process, AHP) y se ha llegado a una conclusión acerca de cuál de las dos propuestas es la más adecuada para la adaptación del BIP al nuevo vehículo. Se ha establecido así en este TFG una propuesta que pueda ser utilizada, si el mando lo estima conveniente, como antecedente para la futura creación de las plantillas orgánicas oficiales en base al 8x8 Dragón, tanto en personal, como en materiales, como en cursos de formación necesarios. Finalmente se han elaborado unas conclusiones muy interesantes para la transformación de un BICC a BIP en base al nuevo vehículo, que se espera puedan servir para una futura adaptación de forma más fluida y documentada. Con este trabajo se crean diversas líneas de trabajo futuras que serán ámbito de estudio para futuras investigaciones acerca del vehículo 8x8 Dragón<br /

    Saliva and salivary components affect goat rumen fermentation in short-term batch incubations

    Get PDF
    The research about the role of saliva in ruminants has been mainly focused on its buffering capacity together with facilitation of the rumination process. However, the role of salivary bioactive components on modulating the activity of the rumen microbiota has been neglected until recently. This study developed an in vitro approach to assess the impact of different components in saliva on rumen microbial fermentation. Four different salivary fractions were prepared from four goats: (i) non-filtrated saliva (NFS), (ii) filtrated through 0.25 µm to remove microorganisms and large particles (FS1), (iii) centrifuged through a 30 kDa filter to remove large proteins, (FS2), and (iv) autoclaved saliva (AS) to keep only the minerals. Two experiments were conducted in 24 h batch culture incubations with 6 ml of total volume consisting of 2 ml of rumen fluid and 4 ml of saliva/buffer mix. In Experiment 1, the effect of increasing the proportion of saliva (either NFS or FS1) in the solution (0%, 16%, 33% and 50% of the total volume) was evaluated. Treatment FS1 promoted greater total volatile fatty acids (VFA) (+8.4%) and butyrate molar proportion (+2.8%) but lower NH3-N concentrations than NFS fraction. Replacing the bicarbonate buffer solution by increasing proportions of saliva resulted in higher NH3-N, total VFA (+8.0%) and propionate molar proportion (+11%). Experiment 2 addressed the effect of the different fractions of saliva (NFS, FS1, FS2 and AS). Saliva fractions led to higher total VFA and NH3-N concentrations than non-saliva incubations, which suggests that the presence of some salivary elements enhanced rumen microbial activity. Fraction FS1 promoted a higher concentration of total VFA (+7.8%) than the other three fractions, and higher propionate (+26%) than NFS and AS. This agrees with findings from Experiment 1 and supports that ‘microbe-free saliva’, in which large salivary proteins are maintained, boosts rumen fermentation. Our results show the usefulness of this in vitro approach and suggest that different salivary components can modulate rumen microbial fermentation, although the specific metabolites and effects they cause need further research

    Evaluating the effect of phenolic compounds as hydrogen acceptors when ruminal methanogenesis is inhibited in vitro – Part 1. Dairy cows

    Get PDF
    Some antimethanogenic feed additives for ruminants promote rumen dihydrogen (H2) accumulation potentially affecting the optimal fermentation of diets. We hypothesised that combining an H2 acceptor with a methanogenesis inhibitor can decrease rumen H2 build-up and improve the production of metabolites that can be useful for the host ruminant. We performed three in vitro incubation experiments using rumen fluid from lactating Holstein cows: Experiment 1 examined the effect of phenolic compounds (phenol, catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, and gallic acid) at 0, 2, 4, and 6 mM on ruminal fermentation for 24 h; Experiment 2 examined the combined effect of each phenolic compound from Experiment 1 at 6 mM with two different methanogenesis inhibitors (Asparagopsis taxiformis or 2-bromoethanesulfonate (BES)) for 24 h incubation; Experiment 3 examined the effect of a selected phenolic compound, phloroglucinol, with or without BES over a longer term using sequential incubations for seven days. Results from Experiment 1 showed that phenolic compounds, independently of the dose, did not negatively affect rumen fermentation, whereas results from Experiment 2 showed that phenolic compounds did not decrease H2 accumulation or modify CH4 production when methanogenesis was decreased by up to 75% by inhibitors. In Experiment 3, after three sequential incubations, phloroglucinol combined with BES decreased H2 accumulation by 72% and further inhibited CH4 production, compared to BES alone. Interestingly, supplementation with phloroglucinol (alone or in combination with the CH4 inhibitor) decreased CH4 production by 99% and the abundance of methanogenic archaea, with just a nominal increase in H2 accumulation. Supplementation of phloroglucinol also increased total volatile fatty acid (VFA), acetate, butyrate, and total gas production, and decreased ammonia concentration. This study indicates that some phenolic compounds, particularly phloroglucinol, which are naturally found in plants, could improve VFA production, decrease H2 accumulation and synergistically decrease CH4 production in the presence of antimethanogenic compounds

    Estimulación de la médula espinal en dolor neuropático refractario en adultos: evaluación de la eficacia, efectividad, seguridad y eficiencia en la neuropatía diabética dolorosa y los síndromes de la cirugía fallida de columna y de dolor regional complejo

    Get PDF
    Medul·la espinal; Dolor neuropàtic; Estimulació elèctricaMédula espinal; Dolor neuropático; Estimulación eléctricaSpinal cord; Neuropathic pain; Electrical stimulationAquest informe té com a objectiu avaluar la seguretat, l’eficàcia/efectivitat i el cost-efectivitat de la SCS en adults per al tractament del dolor neuropàtic refractari associat a la neuropatia diabètica dolorosa (NDD) i a les síndromes de fallida de la cirurgia d’esquena (FBSS per les seves sigles en anglès, failed back surgery syndrome) i de dolor regional complex (CRPS per les seves sigles en anglès, complex regional pain syndrome) com a tècnica coadjuvant i en comparació amb els tractaments convencionals.Este informe tiene el objectivo de evaluar la seguridad, la eficacia/efectividad y el coste-efectividad de la SCS en adultos para el tratamiento del dolor neuropático refractario asociado a la neuropatía diabética dolorosa (NDD) y a los síndromes de la cirugía fallida de columna (FBSS por sus siglas en inglés, failed back surgery syndrome) y de dolor regional complejo (CRPS por sus siglas en inglés, complex regional pain syndrome) como técnica coadyuvante y en comparación con los tratamientos convencionales.The aim of this HTA report is to evaluate the safety, efficacy/effectiveness and cost-effectiveness of SCS in adults to treat refractory neuropathic pain associated with painful diabetic neuropathy (PDN, NDD in Spanish), failed back surgery syndrome (FBSS), and complex regional pain syndrome (CRPS) as an adjuvant technique and in comparison with conventional treatments

    LRP10, PGK1 and RPLP0: best reference genes in periprostatic adipose tissue under obesity and prostate cancer conditions

    Get PDF
    Obesity (OB) is a metabolic disorder characterized by adipose tissue dysfunction that has emerged as a health problem of epidemic proportions in recent decades. OB is associated with multiple comorbidities, including some types of cancers. Specifically, prostate cancer (PCa) has been postulated as one of the tumors that could have a causal relationship with OB. Particularly, a specialized adipose tissue (AT) depot known as periprostatic adipose tissue (PPAT) has gained increasing attention over the last few years as it could be a key player in the pathophysiological interaction between PCa and OB. However, to date, no studies have defined the most appropriate internal reference genes (IRGs) to be used in gene expression studies in this AT depot. In this work, two independent cohorts of PPAT samples (n = 20/n = 48) were used to assess the validity of a battery of 15 literature-selected IRGs using two widely used techniques (reverse transcription quantitative PCR [RT-qPCR] and microfluidic-based qPCR array). For this purpose, ΔCt method, GeNorm (v3.5), BestKeeper (v1.0), NormFinder (v.20.0), and RefFinder software were employed to assess the overall trends of our analyses. LRP10, PGK1, and RPLP0 were identified as the best IRGs to be used for gene expression studies in human PPATs, specifically when considering PCa and OB conditions

    Deliverable D6a: Regional climatic characteristics for the European sites at specific times: the dynamical downscaling. Work Package 2, Simulation of the future evolution of the biosphere system using the hierarchical strategy. Modelling Sequential Biosphere Systems under Climate Change for Radioactive Waste Disposal (BIOCLIM)

    Full text link
    The overall aim of BIOCLIM is to assess the possible long-term impacts due to climate change on the safety of radioactive waste repositories in deep formations. This aim is addressed through the following specific objectives: • Development of practical and innovative strategies for representing sequential climatic changes to the geosphere-biosphere system for existing sites over central Europe, addressing the timescale of one million years, which is relevant to the geological disposal of radioactive waste. • Exploration and evaluation of the potential effects of climate change on the nature of the biosphere systems used to assess the environmental impact. • Dissemination of information on the new methodologies and the results obtained from the project among the international waste management community for use in performance assessments of potential or planned radioactive waste repositories. The BIOCLIM project is designed to advance the state-of-the-art of biosphere modelling for use in Performance Assessments. Therefore, two strategies are developed for representing sequential climatic changes to geosphere-biosphere systems. The hierarchical strategy successively uses a hierarchy of climate models. These models vary from simple 2-D models, which simulate interactions between a few aspects of the Earth system at a rough surface resolution, through General Circulation Model (GCM) and vegetation model, which simulate in great detail the dynamics and physics of the atmosphere, ocean and biosphere, to regional models, which focus on the European regions and sites of interest. Moreover, rule-based and statistical downscaling procedures are also considered. Comparisons are provided in terms of climate and vegetation cover at the selected times and for the study regions. The integrated strategy consists of using integrated climate models, representing all the physical mechanisms important for long-term continuous climate variations, to simulate the climate evolution over many millennia. These results are then interpreted in terms of regional climatic changes using rule-based and statistical downscaling approaches. This deliverable, D6a, focuses on the hierarchical strategy, and in particular the MAR simulations. According to the hierarchical strategy developed in the BIOCLIM project to predict future climate, six BIOCLIM experiments were run with the MAR model. In addition to these experiments a baseline experiment, presenting the present-day climate simulated by MAR, was also undertaken. In the first step of the hierarchical strategy the LLN 2-D NH climate model simulated the gross features of the climate of the next 1 Myr [Ref.1]. Six snapshot experiments were selected from these results. In a second step a GCM and a biosphere model were used to simulate in more detail the climate of the selected time periods. These simulations were performed on a global scale [Ref.1]. The third step of the procedure is to derive the regional features of the climate at the same time periods. Therefore the results of the GCM are used as boundary conditions to force the regional climate model (MAR) for the six selected periods and the baseline simulation. The control simulation (baseline) corresponds to the regional climate simulated under present-day conditions, both insolation forcing and atmospheric CO2 concentration. All the BIOCLIM simulations are compared to that baseline simulation. In addition, other comparisons will also be presented. Tableau 1 summarises the characteristics of these BIOCLIM experiments already presented in [Ref.1] and [Ref.2]

    Deliverable D8a: Development of the rule-based downscaling methodology for BIOCLIM Workpackage 3. Work Package 3, Simulation of the future evolution of the biosphere system using the hierarchical strategy. Modelling Sequential Biosphere Systems under Climate Change for Radioactive Waste Disposal (BIOCLIM)

    Full text link
    One of the tasks of BIOCLIM WP3 was to develop a rule-based approach for downscaling from the MoBidiC model of intermediate complexity (see Ref.1) in order to provide consistent estimates of monthly temperature and precipitation for the specific regions of interest to BIOCLIM (Central Spain, Central England and Northeast France, together with Germany and the Czech Republic). Such an approach has been developed and used in a previous study funded by Nirex to downscale output from an earlier version of this climate model covering the Northern Hemisphere only, LLN 2-D NH, to Central England, and evaluated using palaeoclimate proxy data and General Circulation Model (GCM) output for this region. This previous study [Ref.2] provides the starting point for the BIOCLIM work. A statistical downscaling methodology has been developed by Philippe Marbaix of CEA/LSCE for use with the second climate model of intermediate complexity used in BIOCLIM – CLIMBER-GREMLINS (see Ref.1). This statistical methodology is described in Deliverable D8b [Ref.3]. Inter-comparisons of all the downscaling methodologies used in BIOCLIM (including the dynamical methods applied in WP2 – see Ref.4 and Ref.5) are discussed in Deliverable D10-12 [Ref.6]. The rule-based methodology assigns climate states or classes to a point on the time continuum of a region according to a combination of simple threshold values which can be determined from the coarse scale climate model. Once climate states or classes have been defined, monthly temperature and precipitation climatologies are constructed using analogue stations identified from a data base of present-day climate observations. The most appropriate climate classification for BIOCLIM purposes is the Køppen/Trewartha scheme (Ref.7 ; see Appendix 1). This scheme has the advantage of being empirical, but only requires monthly averages of temperature and precipitation as input variables

    Deliverable D7: Continuous climate evolution scenarios over western Europe (1000 km) scale. Work Package 2, Simulation of the future evolution of the biosphere system using the hierarchical strategy. Modelling Sequential Biosphere Systems under Climate Change for Radioactive Waste Disposal (BIOCLIM)

    Full text link
    The overall aim of BIOCLIM is to assess the possible long term impacts due to climate change on the safety of radioactive waste repositories in deep formations. This aim is addressed through the following specific objectives: • Development of practical and innovative strategies for representing sequential climatic changes to the geosphere-biosphere system for existing sites over central Europe, addressing the timescale of one million years, which is relevant to the geological disposal of radioactive waste. • Exploration and evaluation of the potential effects of climate change on the nature of the biosphere systems used to assess the environmental impact. • Dissemination of information on the new methodologies and the results obtained from the project among the international waste management community for use in performance assessments of potential or planned radioactive waste repositories. A key point of the project is therefore to develop strategies for representing sequential long-term climatic changes by addressing time scales of relevance to geological disposal of solid radioactive wastes. The integrated strategy, which first step is described in this deliverable (D7), consists of building an integrated, dynamic climate model, to represent all the known important mechanisms for long term climatic variations. The time-dependent results will then be interpreted in terms of regional climate using rulebased and statistical downscaling approaches. Therefore, the continuous simulation of the climate evolution of the next 200 000 years selected for study is a major objective of the BIOCLIM project. This requires models that account for the simultaneous evolution of the atmosphere, biosphere, land-ice and the ocean. To be able to perform several 200 000-yearlong transient climate simulations, the models have to include all these components, but also need to be simple enough to run fast. Therefore, climate models of intermediate complexity have been chosen to complete this part of the BIOCLIM project. In the present deliverable, we report on the results of two such models, MoBidiC (Louvain-la-Neuve) and CLIMBER-GREMLINS (LSCE). The overall objective of the work presented here is the simulation of the climate of the next 200 000 years for three different CO2 scenarios [Ref.1]. However, both models used for this work have been either modified for the project (MoBidiC) or developed within the project (CLIMBERGREMLINS). Therefore their performance, and the modifications and developments needed to be documented, especially as far as their ability to reproduce past and different climates is concerned. Therefore, a large section of the present deliverable is devoted to the evaluation of the models through past climate simulations. The deliverable is structured as follows: first, a brief description of the models is given. In the second section, results from the models for past climate situations are presented. The third section deals with the future climate simulations devised for the BIOCLIM project: for each CO2 scenario, the results of the two models are compared. It is emphasized that the model results, especially those for CLIMBER-GREMLINS, should be regarded as illustrations of possibilities rather than absolute predictions of climate evolution. The novel approach to long-term climate change adopted in BIOCLIM is based on research tools under continuing development, notably, the CLIMBER-GREMLINS model

    Deliverable D8b: Development of the physical/statistical downscaling methodology and application to climate model CLIMBER for BIOCLIM Workpackage 3. Work Package 3, Simulation of the future evolution of the biosphere system using the hierarchical strategy. Modelling Sequential Biosphere Systems under Climate Change for Radioactive Waste Disposal (BIOCLIM)

    Full text link
    The overall aim of BIOCLIM is to assess the possible long term impacts due to climate change on the safety of radioactive waste repositories in deep formations. This aim is addressed through the following specific objectives: • Development of practical and innovative strategies for representing sequential climatic changes to the geosphere-biosphere system for existing sites over central Europe, addressing the timescale of one million years, which is relevant to the geological disposal of radioactive waste. • Exploration and evaluation of the potential effects of climate change on the nature of the biosphere systems used to assess the environmental impact. • Dissemination of information on the new methodologies and the results obtained from the project among the international waste management community for use in performance assessments of potential or planned radioactive waste repositories. This deliverable has the following specific motivations and objectives: Its main aim is to provide time series of climatic variables at the high resolution as needed by performance assessment (PA) of radioactive waste repositories, on the basis of coarse output from the CLIMBER-GREMLINS climate model
    corecore