23,642 research outputs found

    High-Temperature Superconducting Level Meter for Liquid Argon Detectors

    Get PDF
    Capacitive devices are customarily used as probes to measure the level of noble liquids in detectors operated for neutrino studies and dark matter searches. In this work we describe the use of a high-temperature superconducting material as an alternative to control the level of a cryogenic noble liquid. Lab measurements indicate that the superconductor shows a linear behaviour, a high degree of stability and offers a very accurate determination of the liquid volume. This device is therefore a competitive instrument and shows several advantages over conventional level meters.Comment: 13 pages, 11 figures. Accepted for publication in JINS

    Darboux points and integrability of homogeneous Hamiltonian systems with three and more degrees of freedom

    Full text link
    We consider natural complex Hamiltonian systems with nn degrees of freedom given by a Hamiltonian function which is a sum of the standard kinetic energy and a homogeneous polynomial potential VV of degree k>2k>2. The well known Morales-Ramis theorem gives the strongest known necessary conditions for the Liouville integrability of such systems. It states that for each kk there exists an explicitly known infinite set \scM_k\subset\Q such that if the system is integrable, then all eigenvalues of the Hessian matrix V''(\vd) calculated at a non-zero \vd\in\C^n satisfying V'(\vd)=\vd, belong to \scM_k. The aim of this paper is, among others, to sharpen this result. Under certain genericity assumption concerning VV we prove the following fact. For each kk and nn there exists a finite set \scI_{n,k}\subset\scM_k such that if the system is integrable, then all eigenvalues of the Hessian matrix V''(\vd) belong to \scI_{n,k}. We give an algorithm which allows to find sets \scI_{n,k}. We applied this results for the case n=k=3n=k=3 and we found all integrable potentials satisfying the genericity assumption. Among them several are new and they are integrable in a highly non-trivial way. We found three potentials for which the additional first integrals are of degree 4 and 6 with respect to the momenta.Comment: 54 pages, 1 figur

    Enrichment Cultures should be performed in the detection of Bacterial Oral Human Pathogens in DUWLs

    Get PDF
    Water delivered by dental units during routine dental practice is densely contaminated by bacteria. The aim of this study was to determine actual isolation of the microorganisms sprayed from Dental Unit Water Lines (DUWLs) when enrichment cultures are performed and to compare frequencies with those obtained without enrichment cultures. Moreover, the antimicrobial susceptibilities of the microorganisms isolated were also studied. Water samples were collected from one hundred dental equipments in use at Dental Hospital of our University in order to evaluate the presence/absence of microorganisms and to perform their presumptive identification. Aliquots from all of the samples were inoculated in eight different media including both enrichment and selective media. Minimal inhibitory concentrations (MIC) were determined by the broth dilution method. The results herein reported demonstrate that most of the DUWLs were colonized by bacteria from human oral cavity; when enrichment procedures were applied the percentage of DUWLs with detectable human bacteria was one hundred percent. The results showed that in order to evaluate the actual risk of infections spread by DUWLs the inclusion of a step of pre-enrichment should be performed. The need for devices preventing bacterial contamination of DUWLs is a goal to be achieved in the near future that would contribute to maintain safety in dental medical assistance

    Exact Cross Sections for the Neutralino-Slepton Coannihilation

    Get PDF
    Coannihilation processes provide an important additional mechanism for reducing the density of stable relics in the Universe. In the case of the stable lightest neutralino of the MSSM, and in particular the Constrained MSSM (CMSSM), the coannihilation with sleptons plays a major role in opening up otherwise cosmologically excluded ranges of supersymmetric parameters. In this paper, we derive a full set of exact, analytic expressions for the coannihilation of the lightest neutralino with the sleptons into all two--body tree--level final states in the framework of minimal supersymmetry. We make no simplifying assumptions about the neutralino nor about sfermion masses and mixings other than the absence of explicit CP--violating terms and inter--family mixings. The expressions should be particularly useful in computing the neutralino WIMP relic abundance without the approximation of partial wave expansion. We illustrate the effect of our analytic results with numerical examples and demonstrate a sizeable difference with approximate expressions available in the literature.Comment: LaTeX, 46 pages, 8 eps figure

    Hot dense capsule implosion cores produced by z-pinch dynamic hohlraum radiation

    Full text link
    Hot dense capsule implosions driven by z-pinch x-rays have been measured for the first time. A ~220 eV dynamic hohlraum imploded 1.7-2.1 mm diameter gas-filled CH capsules which absorbed up to ~20 kJ of x-rays. Argon tracer atom spectra were used to measure the Te~ 1keV electron temperature and the ne ~ 1-4 x10^23 cm-3 electron density. Spectra from multiple directions provide core symmetry estimates. Computer simulations agree well with the peak compression values of Te, ne, and symmetry, indicating reasonable understanding of the hohlraum and implosion physics.Comment: submitted to Phys. Rev. Let

    An Effective Temperature Scale for Late M and L Dwarfs, from Resonance Absorption Lines of CsI and RbI

    Full text link
    We present Keck HIRES spectra of 6 late-M dwarfs and 11 L dwarfs. Our goal is to assign effective temperatures to the objects using detailed atmospheric models and fine analysis of the alkali resonance absorption lines of CsI and RbI. These yield mutually consistent results (+-150 K) when we use ``cleared-dust'' models, which account for the removal of refractory species from the molecular states but do not include dust opacities. We find a tendency for the RbI line to imply a slightly higher temperature, which we ascribe to an incomplete treatment of the overlying molecular opacities. The final effective temperatures we adopt are based on the CsI fits alone, though the RbI fits support the CsI temperature sequence. This work, in combination with results from the infrared, hints that dust in these atmospheres has settled out of the high atmosphere but is present in the deep photosphere. We also derive radial and rotational velocities for all the objects, finding that the previously discovered trend of rapid rotation for very low mass objects is quite pervasive. To improve on our analysis, there is a clear need for better molecular line lists and a more detailed understanding of dust formation and dynamics.Comment: 53 pages, including 20 figures and 2 Tables; accepted in Ap

    Gaseous time projection chambers for rare event detection: Results from the T-REX project. II. Dark matter

    Full text link
    As part of the T-REX project, a number of R&D and prototyping activities have been carried out during the last years to explore the applicability of Micromegas-read gaseous TPCs in rare event searches like double beta decay (DBD), axion research and low-mass WIMP searches. While in the companion paper we focus on DBD, in this paper we focus on the results regarding the search for dark matter candidates, both axions and WIMPs. Small ultra-low background Micromegas detectors are used to image the x-ray signal expected in axion helioscopes like CAST at CERN. Background levels as low as 0.8×10−60.8\times 10^{-6} c keV−1^{-1}cm−2^{-2}s−1^{-1} have already been achieved in CAST while values down to ∼10−7\sim10^{-7} c keV−1^{-1}cm−2^{-2}s−1^{-1} have been obtained in a test bench placed underground in the Laboratorio Subterr\'aneo de Canfranc. Prospects to consolidate and further reduce these values down to ∼10−8\sim10^{-8} c keV−1^{-1}cm−2^{-2}s−1^{-1}will be described. Such detectors, placed at the focal point of x-ray telescopes in the future IAXO experiment, would allow for 105^5 better signal-to-noise ratio than CAST, and search for solar axions with gaγg_{a\gamma} down to few 1012^{12} GeV−1^{-1}, well into unexplored axion parameter space. In addition, a scaled-up version of these TPCs, properly shielded and placed underground, can be competitive in the search for low-mass WIMPs. The TREX-DM prototype, with ∼\sim0.300 kg of Ar at 10 bar, or alternatively ∼\sim0.160 kg of Ne at 10 bar, and energy threshold well below 1 keV, has been built to test this concept. We will describe the main technical solutions developed, as well as the results from the commissioning phase on surface. The anticipated sensitivity of this technique might reach ∼10−44\sim10^{-44} cm2^2 for low mass (<10<10 GeV) WIMPs, well beyond current experimental limits in this mass range.Comment: Published in JCAP. New version with erratum incorporated (new figure 14

    Polarization-Sensitive Photodetectors Based on Directionally Oriented Organic Bulk-Heterojunctions

    Get PDF
    Polarized spectroscopic photodetection enables numerous applications in diverse areas such as sensing, industrial quality control, and visible light communications. Although organic photodetectors (OPDs) can offer a cost-effective alternative to silicon-based technology—particularly when flexibility and large-area arrays are desired—polarized OPDs are only beginning to receive due research interest. Instead of resorting to external polarization optics, this report presents polarized OPDs based on directionally oriented blends of poly(3-hexylthiophene) (P3HT) and benchmark polymer or nonfullerene acceptors fabricated using a versatile solution-based method. Furthermore, a novel postprocessing scheme based on backfilling and plasma etching is advanced to ameliorate high dark-currents that are otherwise inherent to fibrillar active layers. The resulting polarized P3HT:N2200 OPDs exhibit a broad enhancement across all principal figures of merit compared to reference isotropic devices, including peak responsivities of 70 mA W−1^{-1} and up to a threefold increase in 3 dB bandwidth to 0.75 MHz under parallel-polarized illumination. Polarization ratios of up to 3.5 are obtained across a spectral range that is determined by the specific donor–acceptor combinations. Finally, as a proof-of-concept demonstration, polarized OPDs are used for photoelasticity analysis of rubber films under tensile deformation, highlighting their potential for existing and emerging applications in advanced optical sensing
    • …
    corecore